Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Simmons, Keith
Дата выпуска 1994
dc.description In 1905, Richard discovered his paradox of definability, and in a letter written that year he presented both the paradox and a solution to it.Soon afterwards, Poincaré endorsed a variant of Richard’s solution.In this paper, I critically examine Richard’s and Poincaré’s ways out.I draw on an objection of Peano’s, and argue that their stated solutions do not work.But I also claim that their writings suggest another way out, different from their stated solutions, and different from the orthodox Tarskian approach.I argue that this second solution does not prevent the return of the paradox
Формат application.pdf
Издатель Taylor & Francis
Копирайт Copyright Taylor and Francis Group, LLC
Название A paradox of definability: Richard’S and poincaré’S ways out
Тип research-article
DOI 10.1080/01445349408837223
Electronic ISSN 1464-5149
Print ISSN 0144-5340
Журнал History and Philosophy of Logic
Том 15
Первая страница 33
Последняя страница 44
Аффилиация Simmons, Keith; Department of Philosophy, Caldwell Hall, University of North Carolina at Chapel Hill
Выпуск 1
Библиографическая ссылка Peano, Giuseppe. 1906. Super theorema de Cantor‐Bernstein et additione. Revista de Mathematical, VIII: 136–157. (Reprinted in Opere scelte, edizione cremonese, Rome 1957, 1, 337–358. This version cited here.)
Библиографическая ссылка Poincaré, Henri. 1906. Les mathématiques et la logique. Revue de métaphysique et de morale, 14: 294–317.
Библиографическая ссылка Poincaré, Henri. 1909. La logique de l’infini. Revue de métaphysique et de morale, 17 Reprinted in Dernières pensées, Flammarion, Paris 1913, 101 - 139. English translation in Mathematics and science: last essays, Dover, New York 1963, 45–64; this version cited here
Библиографическая ссылка Richard, Jules. 1905. Les principes des mathématiques et le problème des ensembles. Revue générale des sciences pures et appliquées, 16: 541 Also in Acta mathematica 30 (1906), 295–6. (English translation in van Heijenoort 1967,143–44.)
Библиографическая ссылка Richard, Jules. 1907. Sur un paradoxe de la théorie des ensembles et sur l’axiome Zermelo. L’enseignement mathématique, 9: 94–98.
Библиографическая ссылка Simmons, Keith. 1990. The diagonal argument and the Liar. Journal of philosophical logic, 19: 277–303.
Библиографическая ссылка Simmons, Keith. 1993. Universality and the Liar: an essay on truth and the diagonal argument, Cambridge University Press.
Библиографическая ссылка Van Heijenoort, Jean, ed. 1967. From Frege to Gödel: a source book in mathematical logic, Cambridge: Harvard University Press.
Библиографическая ссылка Zermelo, Ernst. 1904. Beweis, daß jede Menge wohlgeordnet werden kann. Mathematische Annalen, 59: 514–516. English translation in van Heijenoort 1967,139–141
Библиографическая ссылка Zermelo, Ernst. 1908. Neuer Beweis für die Möglichkeit einer Wohlordnung. Mathematische Annalen, 65: 107–128. Translated in van Heijenoort 1967,183–198

Скрыть метаданые