Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Haltia, Olli
Дата выпуска 1992
dc.description Triangularization methods which have provided a tool for studying the production structure of an economy are considered. The previous triangularization methods are founded on a permutation theorem which defines a necessary condition to the triangularization problem: to permute the industries in an input–output matrix so as to maximize the sum of the below-diagonal elements. This paper shows that a sufficient condition can also be defined in a branch and bound state. Consequently, a powerful triangularization algorithm can be formulated.
Формат application.pdf
Издатель Carfax Publishing Company
Копирайт Copyright Taylor and Francis Group, LLC
Название A Triangularization Algorithm without Ringshift Permutation
Тип research-article
DOI 10.1080/09535319200000020
Electronic ISSN 1469-5758
Print ISSN 0953-5314
Журнал Economic Systems Research
Том 4
Первая страница 223
Последняя страница 234
Аффилиация Haltia, Olli; Economics Department, Queen Mary & Westfield College, University of London
Выпуск 3
Библиографическая ссылка Chenery, H. B. and Watanabe, T. 1958. International comparisons of the structure of production. Econometrica, 26
Библиографическая ссылка Dorman, R., Samuelson, P. and Solow, R. 1958. Linear Programming and Economic Analysis, New York: McGraw-Hill.
Библиографическая ссылка Drabek, Z. 1984. A comparison of technology in centrally-planned and market-type economies. European Economic Review, 25: 293–318.
Библиографическая ссылка Fukui, Y. 1986. A more powerful method for triangularizing input–output matrices and the similarity of production structures. Econometrica, 54(6): 1425–1433.
Библиографическая ссылка Howe, E. C. 1991. A more powerful method for triangularizing input–output matrices: a comment. Econometrica, 59(2): 521–523.
Библиографическая ссылка Korte, B. and Oberhofer, W. 1970. Triangularizing input–output matrices and the structure of production. European Economic Review, 1
Библиографическая ссылка Nemhauser, G. L. and Wolsey, L. A. 1988. Integer and Combinatorial Optimization, New York: Wiley.
Библиографическая ссылка Santhanam, K. V. and Patil, R. H. 1972. A study of the production structure of the Indian economy. Econometrica, 40: 159–176.
Библиографическая ссылка Simpson, D. and Tsukui, J. 1965. The fundamental structure of input–output tables-an international comparison. Review of Economics and Statistics, 4
Библиографическая ссылка Song, B. 1977. The production structure of the Korean economy: international and historical comparison. Econometrica, 45: 147–162.
Библиографическая ссылка Wood, M. and Horton, H. 1950. An experimental dynamic model of the U.S. economy. American Statistical Association, December

Скрыть метаданые