Автор |
Haltia, Olli |
Дата выпуска |
1992 |
dc.description |
Triangularization methods which have provided a tool for studying the production structure of an economy are considered. The previous triangularization methods are founded on a permutation theorem which defines a necessary condition to the triangularization problem: to permute the industries in an input–output matrix so as to maximize the sum of the below-diagonal elements. This paper shows that a sufficient condition can also be defined in a branch and bound state. Consequently, a powerful triangularization algorithm can be formulated. |
Формат |
application.pdf |
Издатель |
Carfax Publishing Company |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
A Triangularization Algorithm without Ringshift Permutation |
Тип |
research-article |
DOI |
10.1080/09535319200000020 |
Electronic ISSN |
1469-5758 |
Print ISSN |
0953-5314 |
Журнал |
Economic Systems Research |
Том |
4 |
Первая страница |
223 |
Последняя страница |
234 |
Аффилиация |
Haltia, Olli; Economics Department, Queen Mary & Westfield College, University of London |
Выпуск |
3 |
Библиографическая ссылка |
Chenery, H. B. and Watanabe, T. 1958. International comparisons of the structure of production. Econometrica, 26 |
Библиографическая ссылка |
Dorman, R., Samuelson, P. and Solow, R. 1958. Linear Programming and Economic Analysis, New York: McGraw-Hill. |
Библиографическая ссылка |
Drabek, Z. 1984. A comparison of technology in centrally-planned and market-type economies. European Economic Review, 25: 293–318. |
Библиографическая ссылка |
Fukui, Y. 1986. A more powerful method for triangularizing input–output matrices and the similarity of production structures. Econometrica, 54(6): 1425–1433. |
Библиографическая ссылка |
Howe, E. C. 1991. A more powerful method for triangularizing input–output matrices: a comment. Econometrica, 59(2): 521–523. |
Библиографическая ссылка |
Korte, B. and Oberhofer, W. 1970. Triangularizing input–output matrices and the structure of production. European Economic Review, 1 |
Библиографическая ссылка |
Nemhauser, G. L. and Wolsey, L. A. 1988. Integer and Combinatorial Optimization, New York: Wiley. |
Библиографическая ссылка |
Santhanam, K. V. and Patil, R. H. 1972. A study of the production structure of the Indian economy. Econometrica, 40: 159–176. |
Библиографическая ссылка |
Simpson, D. and Tsukui, J. 1965. The fundamental structure of input–output tables-an international comparison. Review of Economics and Statistics, 4 |
Библиографическая ссылка |
Song, B. 1977. The production structure of the Korean economy: international and historical comparison. Econometrica, 45: 147–162. |
Библиографическая ссылка |
Wood, M. and Horton, H. 1950. An experimental dynamic model of the U.S. economy. American Statistical Association, December |