Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор PRZYTYCKI, JÓZEF H.
Автор SILVER, DANIEL S.
Автор WILLIAMS, SUSAN G.
Дата выпуска 2005
dc.description Given a compact, connected, oriented 3-manifold $M$ with boundary, and epimorphism $\chi$ from $H_1M$ to a free abelian group $\Pi$, two invariants $\beta$, $\tau \in \bb {Z}\Pi$ are defined. If $M$ embeds in another such 3-manifold $N$ such that $\chi_N$ factors through $\chi$, then the product $\beta\tau$ divides $\Delta_0(H_1\tilde {N})$.A theorem of D. Krebes concerning 4-tangles embedded in links arises as a special case. Algebraic and skein theoretic generalizations for $2n$-tangles provide invariants that persist in the corresponding invariants of links in which they embed. An example is given of a virtual 4-tangle for which Krebesʼs theorem does not hold.
Издатель Cambridge University Press
Название 3-manifolds, tangles and persistent invariants
DOI 10.1017/S0305004105008753
Electronic ISSN 1469-8064
Print ISSN 0305-0041
Журнал Mathematical Proceedings of the Cambridge Philosophical Society
Том 139
Первая страница 291
Последняя страница 306
Аффилиация PRZYTYCKI JÓZEF H.; The George Washington University
Аффилиация SILVER DANIEL S.; University of South Alabama
Аффилиация WILLIAMS SUSAN G.; University of South Alabama
Выпуск 2

Скрыть метаданые