| Автор | PRZYTYCKI, JÓZEF H. |
| Автор | SILVER, DANIEL S. |
| Автор | WILLIAMS, SUSAN G. |
| Дата выпуска | 2005 |
| dc.description | Given a compact, connected, oriented 3-manifold $M$ with boundary, and epimorphism $\chi$ from $H_1M$ to a free abelian group $\Pi$, two invariants $\beta$, $\tau \in \bb {Z}\Pi$ are defined. If $M$ embeds in another such 3-manifold $N$ such that $\chi_N$ factors through $\chi$, then the product $\beta\tau$ divides $\Delta_0(H_1\tilde {N})$.A theorem of D. Krebes concerning 4-tangles embedded in links arises as a special case. Algebraic and skein theoretic generalizations for $2n$-tangles provide invariants that persist in the corresponding invariants of links in which they embed. An example is given of a virtual 4-tangle for which Krebesʼs theorem does not hold. |
| Издатель | Cambridge University Press |
| Название | 3-manifolds, tangles and persistent invariants |
| DOI | 10.1017/S0305004105008753 |
| Electronic ISSN | 1469-8064 |
| Print ISSN | 0305-0041 |
| Журнал | Mathematical Proceedings of the Cambridge Philosophical Society |
| Том | 139 |
| Первая страница | 291 |
| Последняя страница | 306 |
| Аффилиация | PRZYTYCKI JÓZEF H.; The George Washington University |
| Аффилиация | SILVER DANIEL S.; University of South Alabama |
| Аффилиация | WILLIAMS SUSAN G.; University of South Alabama |
| Выпуск | 2 |