Автор |
PRZYTYCKI, JÓZEF H. |
Автор |
SILVER, DANIEL S. |
Автор |
WILLIAMS, SUSAN G. |
Дата выпуска |
2005 |
dc.description |
Given a compact, connected, oriented 3-manifold $M$ with boundary, and epimorphism $\chi$ from $H_1M$ to a free abelian group $\Pi$, two invariants $\beta$, $\tau \in \bb {Z}\Pi$ are defined. If $M$ embeds in another such 3-manifold $N$ such that $\chi_N$ factors through $\chi$, then the product $\beta\tau$ divides $\Delta_0(H_1\tilde {N})$.A theorem of D. Krebes concerning 4-tangles embedded in links arises as a special case. Algebraic and skein theoretic generalizations for $2n$-tangles provide invariants that persist in the corresponding invariants of links in which they embed. An example is given of a virtual 4-tangle for which Krebesʼs theorem does not hold. |
Издатель |
Cambridge University Press |
Название |
3-manifolds, tangles and persistent invariants |
DOI |
10.1017/S0305004105008753 |
Electronic ISSN |
1469-8064 |
Print ISSN |
0305-0041 |
Журнал |
Mathematical Proceedings of the Cambridge Philosophical Society |
Том |
139 |
Первая страница |
291 |
Последняя страница |
306 |
Аффилиация |
PRZYTYCKI JÓZEF H.; The George Washington University |
Аффилиация |
SILVER DANIEL S.; University of South Alabama |
Аффилиация |
WILLIAMS SUSAN G.; University of South Alabama |
Выпуск |
2 |