Автор |
BELOLIPETSKY, MIKHAIL |
Автор |
JONES, GARETH A. |
Дата выпуска |
2005 |
dc.description |
We show that for every $g\geq 2$ there is a compact arithmetic Riemann surface of genus $g$ with at least $4(g-1)$ automorphisms, and that this lower bound is attained by infinitely many genera, the smallest being 24. |
Издатель |
Cambridge University Press |
Название |
A bound for the number of automorphisms of an arithmetic Riemann surface |
DOI |
10.1017/S0305004104008035 |
Electronic ISSN |
1469-8064 |
Print ISSN |
0305-0041 |
Журнал |
Mathematical Proceedings of the Cambridge Philosophical Society |
Том |
138 |
Первая страница |
289 |
Последняя страница |
299 |
Аффилиация |
BELOLIPETSKY MIKHAIL; Sobolev Institute of Mathematics |
Аффилиация |
JONES GARETH A.; University of Southampton |
Выпуск |
2 |