| Автор | BELOLIPETSKY, MIKHAIL |
| Автор | JONES, GARETH A. |
| Дата выпуска | 2005 |
| dc.description | We show that for every $g\geq 2$ there is a compact arithmetic Riemann surface of genus $g$ with at least $4(g-1)$ automorphisms, and that this lower bound is attained by infinitely many genera, the smallest being 24. |
| Издатель | Cambridge University Press |
| Название | A bound for the number of automorphisms of an arithmetic Riemann surface |
| DOI | 10.1017/S0305004104008035 |
| Electronic ISSN | 1469-8064 |
| Print ISSN | 0305-0041 |
| Журнал | Mathematical Proceedings of the Cambridge Philosophical Society |
| Том | 138 |
| Первая страница | 289 |
| Последняя страница | 299 |
| Аффилиация | BELOLIPETSKY MIKHAIL; Sobolev Institute of Mathematics |
| Аффилиация | JONES GARETH A.; University of Southampton |
| Выпуск | 2 |