Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Jakobsche, W.
Автор Repovš, D.
Дата выпуска 1990
dc.description Cannon's recognition problem [10] asks for a short list of topological properties that is reasonably easy to check and that characterizes topological manifolds. In dimensions below three the answer has been known for a long time: see [6, 24]. In dimensions above four it is now known, due to the work of J. W. Cannon [11], R. D. Edwards [14] (see also [12] and [18]), and F. S. Quinn [21], that topological n-manifolds (n ≥ 5) are precisely ENR ℤ-homology n-manifolds with Cannon's disjoint disc property (DDP) [11] and with a vanishing Quinn's local surgery obstruction [23]. In dimension four there is a resolution theorem of Quinn [22] (with the same obstruction as in dimensions ≥ 5) and a 1-LCC shrinking theorem of M. Bestvina and J. J. Walsh [5]. However, it is still an open problem to find an effective analogue of Cannon's DDP for this dimension, one which would yield a shrinking theorem along the lines of that of Edwards [14]. For more on the history of the recognition problem see the survey [24].
Формат application.pdf
Издатель Cambridge University Press
Копирайт Copyright © Cambridge Philosophical Society 1990
Название An exotic factor of S<sup>3</sup> × ℝ
Тип research-article
DOI 10.1017/S0305004100068596
Electronic ISSN 1469-8064
Print ISSN 0305-0041
Журнал Mathematical Proceedings of the Cambridge Philosophical Society
Том 107
Первая страница 329
Последняя страница 344
Аффилиация Jakobsche W.; University of Warsaw
Аффилиация Repovš D.; University of Ljubljana
Выпуск 2

Скрыть метаданые