| Автор | Rankin, R. A. |
| Дата выпуска | 1966 |
| dc.description | 1. Let E be a finite non-null set and write (E) for the family of all permutations of E. Let be a non-null subset of (E) and write () for the subgroup of (E) generated by the members of . For any α ∈ we putso that () is a subgroup of () and is independent of the choice of α in . We suppose that E splits into k disjoint transitivity sets (orbits) E<sub>i</sub>(1 ≤ i ≤ k) with respect to (); thus σE<sub>i</sub> = E<sub>i</sub> for all σ ∈ (). |
| Формат | application.pdf |
| Издатель | Cambridge University Press |
| Копирайт | Copyright © Cambridge Philosophical Society 1966 |
| Название | A campanological problem in group theory. II |
| Тип | research-article |
| DOI | 10.1017/S0305004100039451 |
| Electronic ISSN | 1469-8064 |
| Print ISSN | 0305-0041 |
| Журнал | Mathematical Proceedings of the Cambridge Philosophical Society |
| Том | 62 |
| Первая страница | 11 |
| Последняя страница | 18 |
| Аффилиация | Rankin R. A.; University of Glasgow |
| Выпуск | 1 |