Автор |
Rankin, R. A. |
Дата выпуска |
1966 |
dc.description |
1. Let E be a finite non-null set and write (E) for the family of all permutations of E. Let be a non-null subset of (E) and write () for the subgroup of (E) generated by the members of . For any α ∈ we putso that () is a subgroup of () and is independent of the choice of α in . We suppose that E splits into k disjoint transitivity sets (orbits) E<sub>i</sub>(1 ≤ i ≤ k) with respect to (); thus σE<sub>i</sub> = E<sub>i</sub> for all σ ∈ (). |
Формат |
application.pdf |
Издатель |
Cambridge University Press |
Копирайт |
Copyright © Cambridge Philosophical Society 1966 |
Название |
A campanological problem in group theory. II |
Тип |
research-article |
DOI |
10.1017/S0305004100039451 |
Electronic ISSN |
1469-8064 |
Print ISSN |
0305-0041 |
Журнал |
Mathematical Proceedings of the Cambridge Philosophical Society |
Том |
62 |
Первая страница |
11 |
Последняя страница |
18 |
Аффилиация |
Rankin R. A.; University of Glasgow |
Выпуск |
1 |