Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Daley, D. J.
Дата выпуска 1972
dc.description We are using the term ‘bivariate Poisson process’ to describe a bivariate point process (N<sub>1</sub>(.), N<sub>2</sub>(.)) whose components (or, marginal processes) are Poisson processes. In this we are following Milne (2) who amongst his examples cites the case where N<sub>1</sub>(.) and N<sub>2</sub>(.) refer to the input and output processes respectively of the M/G/∈ queueing system. Such a bivariate point process is infinitely divisible. We shall now show that in a stationary M/M/1 queueing system (i.e. Poisson arrivals at rate λ, exponential service at rate µ > λ, single-server) a similar identification of (N<sub>1</sub>(.), N<sub>2</sub>(.)) yields a bivariate Poisson process that is not infinitely divisible.
Формат application.pdf
Издатель Cambridge University Press
Копирайт Copyright © Cambridge Philosophical Society 1972
Название A bivariate Poisson queueing process that is not infinitely divisible
Тип research-article
DOI 10.1017/S0305004100047289
Electronic ISSN 1469-8064
Print ISSN 0305-0041
Журнал Mathematical Proceedings of the Cambridge Philosophical Society
Том 72
Первая страница 449
Последняя страница 450
Аффилиация Daley D. J.; The Australian National University
Выпуск 3

Скрыть метаданые