Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор VAN DE CRUYS, TIM
Дата выпуска 2010
dc.description AbstractThe distributional similarity methods have proven to be a valuable tool for the induction of semantic similarity. Until now, most algorithms use two-way co-occurrence data to compute the meaning of words. Co-occurrence frequencies, however, need not be pairwise. One can easily imagine situations where it is desirable to investigate co-occurrence frequencies of three modes and beyond. This paper will investigate tensor factorization methods to build a model of three-way co-occurrences. The approach is applied to the problem of selectional preference induction, and automatically evaluated in a pseudo-disambiguation task. The results show that tensor factorization, and non-negative tensor factorization in particular, is a promising tool for Natural Language Processing (nlp).
Формат application.pdf
Издатель Cambridge University Press
Копирайт Copyright © Cambridge University Press 2010
Название A non-negative tensor factorization model for selectional preference induction
Тип research-article
DOI 10.1017/S1351324910000148
Electronic ISSN 1469-8110
Print ISSN 1351-3249
Журнал Natural Language Engineering
Том 16
Первая страница 417
Последняя страница 437
Аффилиация VAN DE CRUYS TIM; INRIA & Université Paris 7, Rocquencourt, France e-mail: timvdc@gmail.com
Выпуск 4

Скрыть метаданые