Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор LEE, SEUNGMI
Автор CHOI, KEY-SUN
Дата выпуска 1999
dc.description A probabilistic parameter reestimation algorithm plays a key role in the automatic acquisition of stochastic grammars. In the case of context-free phrase structure grammars, the inside-outside algorithm is widely used. However, it is not directly applicable to Probabilistic Dependency Grammar (PDG), because PDG is not based on constituents but on a head-dependent relation between pairs of words. This paper presents a reestimation algorithm which is a variation of the inside-outside algorithm adapted to probabilistic dependency grammar. The algorithm can be used either to reestimate the probabilistic parameters of an existing dependency grammar, or to extract a PDG from scratch. Using the algorithm, we have learned a PDG from a part-of-speech-tagged corpus of Korean, which showed about 62·82% dependency accuracy (the percentage of correct dependencies) for unseen test sentences.
Издатель Cambridge University Press
Название A reestimation algorithm for probabilistic dependency grammars
Electronic ISSN 1469-8110
Print ISSN 1351-3249
Журнал Natural Language Engineering
Том 5
Первая страница 251
Последняя страница 270
Аффилиация LEE SEUNGMI; Center for Artificial Intelligence Research, Korea Advanced Institute of Science and Technology
Аффилиация CHOI KEY-SUN; Center for Artificial Intelligence Research, Korea Advanced Institute of Science and Technology
Выпуск 3

Скрыть метаданые