Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Giambò, R.
Автор Javaloyes, M. Á.
Дата выпуска 2007
dc.description We give the notion of a conjugate instant along a solution of the relativistic Lorentz force equation (LFE). Electromagnetic conjugate instants are defined as zeros of solutions of the linearized LFE with fixed value of the charge-to-mass ratio; equivalently, we show that electromagnetic conjugate points are the critical values of the corresponding electromagnetic exponential map. We prove a second-order variational principle relating every solution of the LFE to a canonical lightlike geodesic in a Kaluza–Klein manifold, whose metric is defined using the value of the charge-to-mass ratio. Electromagnetic conjugate instants correspond to conjugate points along the lightlike geodesic, and therefore they are isolated; based on such correspondence and on a recent result of bifurcation for light rays, we prove a bifurcation result for solutions of the LFE in the exact case.
Издатель Cambridge University Press
Название A second-order variational principle for the Lorentz force equation: conjugacy and bifurcation
DOI 10.1017/S0308210506000497
Electronic ISSN 1473-7124
Print ISSN 0308-2105
Журнал Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Том 137
Первая страница 923
Последняя страница 936
Аффилиация Giambò R.; Università di Camerino
Аффилиация Javaloyes M. Á.; Politecnico di Bari
Выпуск 5

Скрыть метаданые