Автор |
Giambò, R. |
Автор |
Javaloyes, M. Á. |
Дата выпуска |
2007 |
dc.description |
We give the notion of a conjugate instant along a solution of the relativistic Lorentz force equation (LFE). Electromagnetic conjugate instants are defined as zeros of solutions of the linearized LFE with fixed value of the charge-to-mass ratio; equivalently, we show that electromagnetic conjugate points are the critical values of the corresponding electromagnetic exponential map. We prove a second-order variational principle relating every solution of the LFE to a canonical lightlike geodesic in a Kaluza–Klein manifold, whose metric is defined using the value of the charge-to-mass ratio. Electromagnetic conjugate instants correspond to conjugate points along the lightlike geodesic, and therefore they are isolated; based on such correspondence and on a recent result of bifurcation for light rays, we prove a bifurcation result for solutions of the LFE in the exact case. |
Издатель |
Cambridge University Press |
Название |
A second-order variational principle for the Lorentz force equation: conjugacy and bifurcation |
DOI |
10.1017/S0308210506000497 |
Electronic ISSN |
1473-7124 |
Print ISSN |
0308-2105 |
Журнал |
Proceedings of the Royal Society of Edinburgh: Section A Mathematics |
Том |
137 |
Первая страница |
923 |
Последняя страница |
936 |
Аффилиация |
Giambò R.; Università di Camerino |
Аффилиация |
Javaloyes M. Á.; Politecnico di Bari |
Выпуск |
5 |