Автор |
Shi, Beibei |
Автор |
Dong, Yujun |
Автор |
Huang, Qi |
Дата выпуска |
2007 |
dc.description |
In this paper, we first investigate the classification of positively homogeneous equations $(\phi_p(u'))'+q(t)\phi_p(u)=0$, $u(0)=0=u(1)$, where $p>1$ is fixed, $\phi_p(u)=|u|^{p-2}u$ and $q\in L^{\infty}(0,1)$, and then discuss the existence of solutions for non-homogeneous equations. The main method of classification is by using a generalized Prufer equation $$ \theta'=|\4\cos_p\theta|^p+\frac{q(t)}{p-1}|\4\sin_p\theta|^p\quad\text{for }t\in(0,1), $$ where $\sin_p:\mathbb{R}\to[-1,1]$ is a periodic function and $\cos_pt=\mathrm{d}\sin_pt/\mathrm{d} t$ for $t\in\mathbb{R}$. |
Издатель |
Cambridge University Press |
Название |
An index classification theory of homogeneous p-Laplacian equations and existence of solutions of non-homogeneous equations |
DOI |
10.1017/S0308210505000454 |
Electronic ISSN |
1473-7124 |
Print ISSN |
0308-2105 |
Журнал |
Proceedings of the Royal Society of Edinburgh: Section A Mathematics |
Том |
137 |
Первая страница |
183 |
Последняя страница |
194 |
Аффилиация |
Shi Beibei; Nanjing Normal University; Nanjing Xiaozhuang College |
Аффилиация |
Dong Yujun; Nanjing Normal University |
Аффилиация |
Huang Qi; Southern Yangtzr University |
Выпуск |
1 |