Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Chen, Willa W.
Автор Deo, Rohit S.
Дата выпуска 2004
dc.description We present a goodness-of-fit test for time series models based on the discrete spectral average estimator. Unlike current tests of goodness of fit, the asymptotic distribution of our test statistic allows the null hypothesis to be either a short- or long-range dependence model. Our test is in the frequency domain, is easy to compute, and does not require the calculation of residuals from the fitted model. This is especially advantageous when the fitted model is not a finite-order autoregressive model. The test statistic is a frequency domain analogue of the test by Hong (1996, Econometrica 64, 837–864), which is a generalization of the Box and Pierce (1970, Journal of the American Statistical Association 65, 1509–1526) test statistic. A simulation study shows that our test has power comparable to that of Hongʼs test and superior to that of another frequency domain test by Milhoj (1981, Biometrika 68, 177–187).
Издатель Cambridge University Press
Название A GENERALIZED PORTMANTEAU GOODNESS-OF-FIT TEST FOR TIME SERIES MODELS
DOI 10.1017/S0266466604202067
Electronic ISSN 1469-4360
Print ISSN 0266-4666
Журнал Econometric Theory
Том 20
Первая страница 382
Последняя страница 416
Аффилиация Chen Willa W.; Texas A&M University; Texas A&M University
Аффилиация Deo Rohit S.; New York University
Выпуск 2

Скрыть метаданые