Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Fermanian, Jean-David
Автор Salanié, Bernard
Дата выпуска 2004
dc.description Existing simulation-based estimation methods are either general purpose but asymptotically inefficient or asymptotically efficient but only suitable for restricted classes of models. This paper studies a simulated maximum likelihood method that rests on estimating the likelihood nonparametrically on a simulated sample. We prove that this method, which can be used on very general models, is consistent and asymptotically efficient for static models. We then propose an extension to dynamic models and give some Monte-Carlo simulation results on a dynamic Tobit model.We thank Jean-Pierre Florens, Arnoldo Frigessi, Christian Gouriéroux, Jim Heckman, Guy Laroque, Oliver Linton, Nour Meddahi, Alain Monfort, Eric Renault, Christian Robert, Neil Shephard, and two referees for their comments. Remaining errors and imperfections are ours. Parts of this paper were written while Bernard Salanié was visiting the University of Chicago, which he thanks for its hospitality.
Издатель Cambridge University Press
Название A NONPARAMETRIC SIMULATED MAXIMUM LIKELIHOOD ESTIMATION METHOD
DOI 10.1017/S0266466604204054
Electronic ISSN 1469-4360
Print ISSN 0266-4666
Журнал Econometric Theory
Том 20
Первая страница 701
Последняя страница 734
Аффилиация Fermanian Jean-David; CREST
Аффилиация Salanié Bernard; CEPR; ENPC
Выпуск 4

Скрыть метаданые