Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Aitken, A. C.
Дата выпуска 1949
dc.description 1. This celebrated problem is treated in nearly all the textbooks on probability; for example in Bertrand's Calcul des Probabilités, 1889, pp. 15–17, in Poincare's of the same title, 1896, pp. 36–38, and in most of the recent textbooks. The problem may be stated in abstract terms as follows: Among the n! permutations (α<sub>1</sub>α<sub>2</sub>α<sub>3</sub>… α<sub>n</sub>) of the natural order (123…n), how many have no α<sub>i</sub> equal to j? The problem has been clothed in many picturesque (and highly unlikely) “representations”; for example, by imagining n letters placed at random in n addressed envelopes, and inquiring what is the chance that no letter is in its correct envelope; or by imagining n gentlemen returning at random to their n houses; and so on, ad risum. Various derivations have also been given of the probability in question, namely the first n + 1 terms of the expansion of e <sup>-1</sup>, to which function the probability converges with rapidity as n increases.
Формат application.pdf
Издатель Cambridge University Press
Копирайт Copyright © Edinburgh Mathematical Society 1949
Название A note on the “probleme des rencontres.”
Тип research-article
DOI 10.1017/S0950184300002846
Electronic ISSN 0950-1843
Print ISSN 0950-1843
Журнал Edinburgh Mathematical Notes
Том 37
Первая страница 9
Последняя страница 12
Аффилиация Aitken A. C.; The University

Скрыть метаданые