Автор |
Russell, A. D. |
Дата выпуска |
1949 |
dc.description |
Theorem. If a circle cut all the sides (produced if necessary) of an equilateral polygon, the algebraic sum of the intercepts between the vertices and the circle is zero; i.e., if any side AB of the polygon be cut by the circle in P and Q, then Σ(AP + BQ) = 0, the intercepts being signed by fixing a positive direction round the contour of the polygon. |
Формат |
application.pdf |
Издатель |
Cambridge University Press |
Копирайт |
Copyright © Edinburgh Mathematical Society 1949 |
Название |
A note on equilateral polygons |
Тип |
research-article |
DOI |
10.1017/S0950184300002895 |
Electronic ISSN |
0950-1843 |
Print ISSN |
0950-1843 |
Журнал |
Edinburgh Mathematical Notes |
Том |
37 |
Первая страница |
23 |
Последняя страница |
24 |
Аффилиация |
Russell A. D.; 12 Heugh Street, Falkirk. |