Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Rao, S. K. Lakshmana
Дата выпуска 1956
dc.description The well-known multiple integralwhere R<sub>n</sub> is the region defined by x<sub>1</sub> ≥ 0, x<sub>2</sub> ≥ 0, …., x<sub>n</sub> ≥ 0, x<sub>1</sub> + x<sub>2</sub> + …. + x<sub>n</sub> ≤ 1, and where a<sub>0</sub>, a<sub>1</sub>, …, a<sub>n</sub> are positive constants, can be evaluated either in the classical way using the Dirichlet transformation or by the use of the Laplace transform. I. J. Good has considered a more general integral and has proved the following result by induction:—If f<sub>1</sub>(t), f<sub>2</sub>(t), …, f<sub>n</sub>(t) are Lebesgue measurable for 0 ≤ t ≤ 1, m<sub>1</sub>, m<sub>2</sub>, …., m<sub>n</sub>, m<sub>n+1</sub> (= 0) are real numbers, M<sub>r</sub> = m<sub>1</sub> + m<sub>2</sub> + … + m<sub>r</sub>, x<sub>1</sub>, x<sub>2</sub>, …, x<sub>n</sub> are non-negative variables and X<sub>r</sub> = x<sub>1</sub> + x<sub>2</sub> + … + x<sup>r</sup>, thenIt does not seem to be possible to establish this relation by employing the Laplace transform, but we show below that it can be obtained using the Mellin transform.
Формат application.pdf
Издатель Cambridge University Press
Копирайт Copyright © Edinburgh Mathematical Society 1956
Название A generalisation of Dirichlet's multiple integral
Тип research-article
DOI 10.1017/S0950184300000288
Electronic ISSN 0950-1843
Print ISSN 0950-1843
Журнал Edinburgh Mathematical Notes
Том 40
Первая страница 16
Последняя страница 18

Скрыть метаданые