| Автор | Stokes, G. D. C. |
| Дата выпуска | 1925 |
| dc.description | Let AB be any chord passing through the fixed point P. Draw the diameter AOC, join CP and let it meet the circumference at D Then in triangle ACP, AC<sup>2</sup> = AP<sup>2</sup> + CP<sup>2</sup> together with either 2AP. PB or 2 CP. PD according as CP is projected on AP or AP on CP. Hence AP.PB = CP.PD. Now draw the diameter DOE, join EP and let it meet the circumference at F. Then the theorem is true for chords CD. EF. |
| Формат | application.pdf |
| Издатель | Cambridge University Press |
| Копирайт | Copyright © Edinburgh Mathematical Society 1925 |
| Название | A Limit Proof of the Theorem Euc. III, 35 |
| Тип | research-article |
| DOI | 10.1017/S1757748900001821 |
| Print ISSN | 1757-7489 |
| Журнал | Mathematical Notes |
| Том | 23 |
| Первая страница | 7 |
| Последняя страница | 8 |