Автор |
Stokes, G. D. C. |
Дата выпуска |
1925 |
dc.description |
Let AB be any chord passing through the fixed point P. Draw the diameter AOC, join CP and let it meet the circumference at D Then in triangle ACP, AC<sup>2</sup> = AP<sup>2</sup> + CP<sup>2</sup> together with either 2AP. PB or 2 CP. PD according as CP is projected on AP or AP on CP. Hence AP.PB = CP.PD. Now draw the diameter DOE, join EP and let it meet the circumference at F. Then the theorem is true for chords CD. EF. |
Формат |
application.pdf |
Издатель |
Cambridge University Press |
Копирайт |
Copyright © Edinburgh Mathematical Society 1925 |
Название |
A Limit Proof of the Theorem Euc. III, 35 |
Тип |
research-article |
DOI |
10.1017/S1757748900001821 |
Print ISSN |
1757-7489 |
Журнал |
Mathematical Notes |
Том |
23 |
Первая страница |
7 |
Последняя страница |
8 |