On certain modular determinants
Turnbull, H. W.; Turnbull H. W.; The University
Журнал:
Edinburgh Mathematical Notes
Дата:
1940
Аннотация:
An interesting determinant occurs in the fifth volume of Muir's History<sup>1</sup>. It iswhere n = ½ (p – 1), and a<sub>rs</sub> is the smallest positive integer such thatra<sub>rs</sub> = s (mod p), (1) p being any odd prime number. It is evident that each element a<sub>rs</sub> is unique and non zero. For p = 5, 7, 11 the determinants are (2) respectively, and their values are– 5 , 7<sup>2</sup>, 11<sup>4</sup>.
207.1Кб