Автор |
Walsh, C. E. |
Дата выпуска |
1940 |
dc.description |
Let f(x) ≡ (1 – x)<sup>b</sup> + b a<sup>b-1</sup> xø (x) ≡ x<sup>c</sup> – c Β<sup>c-1</sup> xwhere b ≧ 1, c ≧ 1, 0 ≦ α ≦ 1, 0 ≦ β ≦ 1, and x is assumed to lie in the range (0, 1). By differentiation, or otherwise, it is easily shewn that f(x) and ø (x) have minima when x = 1 – α and when x = β, respectively. Hence(1 – x)<sup>b</sup> + a<sup>b-1</sup> x ≧ b a<sup>b-1</sup> + (1 – b) a<sup>b</sup>x<sup>c</sup> β<sup>c-1</sup> x ≧ (1 – c)β<sup>c</sup>. |
Формат |
application.pdf |
Издатель |
Cambridge University Press |
Копирайт |
Copyright © Edinburgh Mathematical Society 1940 |
Название |
Inequalities for Positive Series |
Тип |
research-article |
DOI |
10.1017/S0950184300002706 |
Electronic ISSN |
0950-1843 |
Print ISSN |
0950-1843 |
Журнал |
Edinburgh Mathematical Notes |
Том |
32 |
Первая страница |
xxx |
Последняя страница |
xxxii |
Аффилиация |
Walsh C. E.; 34 Chelmsford Road, Ranelagh, Dublin |