Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Bavula, V. V.
Автор Lenagan, T. H.
Дата выпуска 1999
dc.description Bernstein's famous result, that any non-zero module M over the n-th Weyl algebra A<sub>n</sub> satisfies GKdim(M)≥GKdim(A<sub>n</sub>)/2, does not carry over to arbitrary simple affine algebras, as is shown by an example of McConnell. Bavula introduced the notion of filter dimension of simple algebra to explain this failure. Here, we introduce the faithful dimension of a module, a variant of the filter dimension, to investigate this phenomenon further and to study a revised definition of holonomic modules. We compute the faithful dimension for certain modules over a variant of the McConnell example to illustrate the utility of this new dimension.
Формат application.pdf
Издатель Cambridge University Press
Копирайт Copyright © Edinburgh Mathematical Society 1999
Название A Bernstein-Gabber-Joseph theorem for affine algebras*
Тип research-article
DOI 10.1017/S0013091500020277
Electronic ISSN 1464-3839
Print ISSN 0013-0915
Журнал Proceedings of the Edinburgh Mathematical Society
Том 42
Первая страница 311
Последняя страница 332
Аффилиация Bavula V. V.; Kiev University
Аффилиация Lenagan T. H.; University of Edinburgh
Выпуск 2

Скрыть метаданые