Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Kartsatos, Athanassios G.
Дата выпуска 1975
dc.description We are interested here in proving the existence of solutions to the (generalised) boundary value problemwhere A is a continuous n×n matrix on R<sub>+</sub> = [0, ∞), F is a continuous n vector on R<sub>+</sub> × S (S = a suitable subset of R<sup>n</sup>), T is a bounded linear operator defined on (or on a subspace of) C[R<sub>+</sub>, R<sup>n</sup>], the space of all bounded and continuous R<sup>n</sup>-valued functions on R<sub>+</sub>, and r is a fixed vector in R<sup>n</sup>. There is an abundance of papers dealing with the problem ((I), (II)) on finite intervals, either in its full generality (cf., for example, (1), (2), (3), (4), (6)), or for special cases of the operator T. The reader is especially referred to the work of Shreve (7), (8) for such problems on infinite intervals for scalar equations. A series representation of the solutions is given by Kravchenko and Yablonskii (5). Most of our methods are extensions of the corresponding ones on finite intervals with some variations concerning the application of fixed-point theorems. Examples of interesting operators T arewhere V(t), M, N are n×n matrices with V(t) integrable.
Формат application.pdf
Издатель Cambridge University Press
Копирайт Copyright © Edinburgh Mathematical Society 1975
Название A boundary value problem on an infinite interval
Тип research-article
DOI 10.1017/S0013091500015510
Electronic ISSN 1464-3839
Print ISSN 0013-0915
Журнал Proceedings of the Edinburgh Mathematical Society
Том 19
Первая страница 245
Последняя страница 252
Аффилиация Kartsatos Athanassios G.; University of South Florida
Выпуск 3

Скрыть метаданые