Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Weston, J. D.
Дата выпуска 1958
dc.description A Banach space which is not reflexive may or may not be equivalent (in Banach's sense) to an adjoint space. For example, it is an elementary fact that the space (l), though not reflexive, is equivalent to (c<sub>o</sub>)*, where (c<sub>o</sub>) is the space of all sequences that converge to zero, normea in the usual way. On the other hand, (c<sub>o</sub>) itself is not equivalent to any adjoint space : this can be proved by means of the Krein-Milman theorem, but here we obtain the result by an elementary argument which is scarcely more complicated than the standard proof that (c<sub>o</sub>) is not reflexive.
Формат application.pdf
Издатель Cambridge University Press
Копирайт Copyright © Edinburgh Mathematical Society 1958
Название A Banach Space which is not Equivalent to an Adjoint Space
Тип research-article
DOI 10.1017/S0013091500010786
Electronic ISSN 1464-3839
Print ISSN 0013-0915
Журнал Proceedings of the Edinburgh Mathematical Society
Том 11
Первая страница 105
Последняя страница 105
Аффилиация Weston J. D.; King's College
Выпуск 2

Скрыть метаданые