Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор LIU, QING (CHARLIE)
Автор WANG, HSU-PIN (BEN)
Дата выпуска 2001
dc.description Techniques for machine condition monitoring and diagnostics are gaining acceptance in various industrial sectors. They have proved to be effective in predictive or proactive maintenance and quality control. Along with the fast development of computer and sensing technologies, sensors are being increasingly used to monitor machine status. In recent years, the fusion of multisensor data has been applied to diagnose machine faults. In this study, multisensors are used to collect signals of rotating imbalance vibration of a test rig. The characteristic features of each vibration signal are extracted with an auto-regressive (AR) model. Data fusion is then implemented with a Cascade-Correlation (CC) neural network. The results clearly show that multisensor data-fusion-based diagnostics outperforms the single sensor diagnostics with statistical significance.
Издатель Cambridge University Press
Тема Data Fusion
Тема Imbalance
Тема Machine Diagnostics
Тема Multiple Sensors
Название A case study on multisensor data fusion for imbalance diagnosis of rotating machinery
Electronic ISSN 1469-1760
Print ISSN 0890-0604
Журнал AI EDAM
Том 15
Первая страница 203
Последняя страница 210
Аффилиация LIU QING (CHARLIE); Florida A&M University—Florida State University
Аффилиация WANG HSU-PIN (BEN); Florida A&M University—Florida State University; Florida A&M University—Florida State University
Выпуск 3

Скрыть метаданые