Автор |
Hagenah, Christian |
Автор |
Muscholl, Anca |
Дата выпуска |
2000 |
dc.description |
The standard procedure to transform a regular expression of size n to an ϵ-free nondeterministic finite automaton yields automata with O(n) states and O(n <sup>2</sup>) transitions. For a long time this was supposed to be also the lower bound, but a result by Hromkovic et al. showed how to build an ϵ-free NFA with only O(n log<sup>2</sup>(n)) transitions. The current lower bound on the number of transitions is Ω(n log(n)). A rough running time estimation for the common follow sets (CFS) construction proposed by Hromkovič et al. yields a cubic algorithm. In this paper we present a sequential algorithm for the CFS construction which works in time O(n log(n) + size of the output). On a CREW PRAM the CFS construction can be performed in time O(log(n)) using O(n + (size of the output)/log(n)) processors. We also present a simpler proof of the lower bound on the number of transitions. |
Формат |
application.pdf |
Издатель |
EDP Sciences |
Копирайт |
© EDP Sciences, 2000 |
Тема |
Epsilon-free nondeterministic automata |
Тема |
regular expressions |
Тема |
common follow sets construction. |
Название |
Computing ϵ-Free NFA from Regular Expressions in O(n log<sup>2</sup>(n)) Time |
Тип |
research-article |
DOI |
10.1051/ita:2000116 |
Electronic ISSN |
1290-385X |
Print ISSN |
0988-3754 |
Журнал |
RAIRO - Theoretical Informatics and Applications |
Том |
34 |
Первая страница |
257 |
Последняя страница |
277 |
Аффилиация |
Hagenah Christian; Institut für Informatik, Universität Stuttgart, Breitwiesenstr. 20-22, 70565 Stuttgart, Germany. |
Аффилиация |
Muscholl Anca; LIAFA, Université Paris VII, 2 place Jussieu, Case 7014, 75251 Paris Cedex 05, France; e-mail: muscholl@liafa.jussieu.fr; Institut für Informatik, Universität Stuttgart, Breitwiesenstr. 20-22, 70565 Stuttgart, Germany. LIAFA, Université Paris VII, 2 place Jussieu, Case 7014, 75251 Paris Cedex 05, France; e-mail: muscholl@liafa.jussieu.fr |
Выпуск |
4 |