Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Hagenah, Christian
Автор Muscholl, Anca
Дата выпуска 2000
dc.description The standard procedure to transform a regular expression of size n to an ϵ-free nondeterministic finite automaton yields automata with O(n) states and O(n <sup>2</sup>) transitions. For a long time this was supposed to be also the lower bound, but a result by Hromkovic et al. showed how to build an ϵ-free NFA with only O(n log<sup>2</sup>(n)) transitions. The current lower bound on the number of transitions is Ω(n log(n)). A rough running time estimation for the common follow sets (CFS) construction proposed by Hromkovič et al. yields a cubic algorithm. In this paper we present a sequential algorithm for the CFS construction which works in time O(n log(n) + size of the output). On a CREW PRAM the CFS construction can be performed in time O(log(n)) using O(n + (size of the output)/log(n)) processors. We also present a simpler proof of the lower bound on the number of transitions.
Формат application.pdf
Издатель EDP Sciences
Копирайт © EDP Sciences, 2000
Тема Epsilon-free nondeterministic automata
Тема regular expressions
Тема common follow sets construction.
Название Computing ϵ-Free NFA from Regular Expressions in O(n log<sup>2</sup>(n)) Time
Тип research-article
DOI 10.1051/ita:2000116
Electronic ISSN 1290-385X
Print ISSN 0988-3754
Журнал RAIRO - Theoretical Informatics and Applications
Том 34
Первая страница 257
Последняя страница 277
Аффилиация Hagenah Christian; Institut für Informatik, Universität Stuttgart, Breitwiesenstr. 20-22, 70565 Stuttgart, Germany.
Аффилиация Muscholl Anca; LIAFA, Université Paris VII, 2 place Jussieu, Case 7014, 75251 Paris Cedex 05, France; e-mail: muscholl@liafa.jussieu.fr; Institut für Informatik, Universität Stuttgart, Breitwiesenstr. 20-22, 70565 Stuttgart, Germany. LIAFA, Université Paris VII, 2 place Jussieu, Case 7014, 75251 Paris Cedex 05, France; e-mail: muscholl@liafa.jussieu.fr
Выпуск 4

Скрыть метаданые