Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Honkala, Juha
Дата выпуска 2007
dc.description Suppose ƒ : X* → X* is a morphism and u,v ∈ X*. For every nonnegative integer n, let z <sub> n </sub> be the longest common prefix of ƒ <sup>n</sup>(u) and ƒ <sup>n</sup>(v), and let u<sub>n</sub>,v<sub>n</sub> ∈ X* be words such that ƒ <sup>n</sup>(u) = z<sup>n</sup>u<sup>n</sup> and ƒ <sup>n</sup>(v) = z<sup>n</sup>v<sup>n</sup> . We prove that there is a positive integer q such that for any positive integer p, the prefixes of u <sub> n </sub> (resp. v <sub> n </sub>) of length p form an ultimately periodic sequence having period q. Further, there is a value of q which works for all words u,v ∈ X*.
Формат application.pdf
Издатель EDP Sciences
Копирайт © EDP Sciences, 2007
Тема Iterated morphism
Тема periodicity
Название A periodicity property of iterated morphisms
Тип research-article
DOI 10.1051/ita:2007016
Electronic ISSN 1290-385X
Print ISSN 0988-3754
Журнал RAIRO - Theoretical Informatics and Applications
Том 41
Первая страница 215
Последняя страница 223
Аффилиация Honkala Juha; Department of Mathematics, University of Turku, 20014 Turku, Finland; juha.honkala@utu.fi
Выпуск 2

Скрыть метаданые