Автор |
Vialette, Stéphane |
Дата выпуска |
2006 |
dc.description |
The MATRIX PACKING DOWN problem asks to find a row permutation of a given (0,1)-matrix in such a way that the total sum of the first non-zero column indexes is maximized. We study the computational complexity of this problem. We prove that the MATRIX PACKING DOWN problem is NP-complete even when restricted to zero trace symmetric (0,1)-matrices or to (0,1)-matrices with at most two 1's per column. Also, as intermediate results, we introduce several new simple graph layout problems which are proved to be NP-complete. |
Формат |
application.pdf |
Издатель |
EDP Sciences |
Копирайт |
© EDP Sciences, 2006 |
Тема |
NP-hardness |
Тема |
(0,1)-matrix. |
Название |
Packing of (0, 1)-matrices |
Тип |
research-article |
DOI |
10.1051/ita:2006037 |
Electronic ISSN |
1290-385X |
Print ISSN |
0988-3754 |
Журнал |
RAIRO - Theoretical Informatics and Applications |
Том |
40 |
Первая страница |
519 |
Последняя страница |
535 |
Аффилиация |
Vialette Stéphane; Laboratoire de Recherche en Informatique (LRI), UMR 8623, Bât. 490, Université Paris-Sud, 91405 Orsay Cedex, France; Stephane.vialette@lri.fr |
Выпуск |
4 |