Автор |
Ochem, Pascal |
Дата выпуска |
2006 |
dc.description |
We present an algorithm which produces, in some cases, infinite words avoiding both large fractional repetitions and a given set of finite words. We use this method to show that all the ternary patterns whose avoidability index was left open in Cassaigne's thesis are 2-avoidable. We also prove that there exist exponentially many $\frac{7}{4}^+$-free ternary words and $\frac{7}{5}^+$-free 4-ary words. Finally we give small morphisms for binary words containing only the squares <sup>2</sup>, 1<sup>2</sup> and (01)² and for binary words avoiding large squares and fractional repetitions. |
Формат |
application.pdf |
Издатель |
EDP Sciences |
Копирайт |
© EDP Sciences, 2006 |
Название |
A generator of morphisms for infinite words |
Тип |
research-article |
DOI |
10.1051/ita:2006020 |
Electronic ISSN |
1290-385X |
Print ISSN |
0988-3754 |
Журнал |
RAIRO - Theoretical Informatics and Applications |
Том |
40 |
Первая страница |
427 |
Последняя страница |
441 |
Аффилиация |
Ochem Pascal; LaBRI, Université Bordeaux I, 351, cours de la Libération, 33405 Talence Cedex, France; ochem@labri.fr |
Выпуск |
3 |