Автор |
Héam, Pierre-Cyrille |
Дата выпуска |
2000 |
dc.description |
A reversible automaton is a finite automaton in which each letter induces a partial one-to-one map from the set of states into itself. We solve the following problem proposed by Pin. Given an alphabet A, does there exist a sequence of languages K <sub> n </sub> on A which can be accepted by a reversible automaton, and such that the number of states of the minimal automaton of K <sub> n </sub> is in O(n), while the minimal number of states of a reversible automaton accepting K <sub> n </sub> is in O(ρ <sup> n </sup>) for some ρ > 1? We give such an example with $\rho=\left(\frac{9}{8}\right)^{\frac{1}{12}}$. |
Формат |
application.pdf |
Издатель |
EDP Sciences |
Копирайт |
© EDP Sciences, 2000 |
Тема |
Automata |
Тема |
formal languages |
Тема |
reversible automata |
Название |
A Lower Bound For Reversible Automata |
Тип |
research-article |
DOI |
10.1051/ita:2000120 |
Electronic ISSN |
1290-385X |
Print ISSN |
0988-3754 |
Журнал |
RAIRO - Theoretical Informatics and Applications |
Том |
34 |
Первая страница |
331 |
Последняя страница |
341 |
Аффилиация |
Héam Pierre-Cyrille; LIAFA, Université Paris 7, 2 place Jussieu, 75251 Paris Cedex 05, France; (heam@liafa.jussieu.fr) |
Выпуск |
5 |