Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Pinkus, Allan
Дата выпуска 1999
dc.description In this survey we discuss various approximation-theoretic problems that arise in the multilayer feedforward perceptron (MLP) model in neural networks. The MLP model is one of the more popular and practical of the many neural network models. Mathematically it is also one of the simpler models. Nonetheless the mathematics of this model is not well understood, and many of these problems are approximation-theoretic in character. Most of the research we will discuss is of very recent vintage. We will report on what has been done and on various unanswered questions. We will not be presenting practical (algorithmic) methods. We will, however, be exploring the capabilities and limitations of this model.
Формат application.pdf
Издатель Cambridge University Press
Копирайт Copyright © Cambridge University Press 1999
Название Approximation theory of the MLP model in neural networks
Тип research-article
DOI 10.1017/S0962492900002919
Electronic ISSN 1474-0508
Print ISSN 0962-4929
Журнал Acta Numerica
Том 8
Первая страница 143
Последняя страница 195
Аффилиация Pinkus Allan; Technion – Israel Institute of Technology

Скрыть метаданые