Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Cools, Ronald
Дата выпуска 1997
dc.description In this paper we present a general, theoretical foundation for the construction of cubature formulae to approximate multivariate integrals. The focus is on cubature formulae that are exact for certain vector spaces of polynomials. Our main quality criteria are the algebraic and trigonometric degrees. The constructions using ideal theory and invariant theory are outlined. The known lower bounds for the number of points are surveyed and characterizations of minimal cubature formulae are given. We include references to all known minimal cubature formulae. Finally, some methods to construct cubature formulae illustrate the previously introduced concepts and theorems.
Формат application.pdf
Издатель Cambridge University Press
Копирайт Copyright © Cambridge University Press 1997
Название Constructing cubature formulae: the science behind the art
Тип research-article
DOI 10.1017/S0962492900002701
Electronic ISSN 1474-0508
Print ISSN 0962-4929
Журнал Acta Numerica
Том 6
Первая страница 1
Последняя страница 54
Аффилиация Cools Ronald; Katholieke Universiteit Leuven

Скрыть метаданые