Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Cockburn, Bernardo
Дата выпуска 2003
dc.description In this paper, we review some ideas on continuous dependence results for the entropy solution of hyperbolic scalar conservation laws. They lead to a complete L^\infty(L^1)-approximation theory with which error estimates for numerical methods for this type of equation can be obtained. The approach we consider consists in obtaining continuous dependence results for the solutions of parabolic conservation laws and deducing from them the corresponding results for the entropy solution. This is a natural approach, as the entropy solution is nothing but the limit of solutions of parabolic scalar conservation laws as the viscosity coefficient goes to zero.
Издатель Cambridge University Press
Название Continuous dependence and error estimation for viscosity methods
DOI 10.1017/S0962492902000107
Electronic ISSN 1474-0508
Print ISSN 0962-4929
Журнал Acta Numerica
Том 12
Первая страница 127
Последняя страница 180
Аффилиация Cockburn Bernardo; University of Minnesota

Скрыть метаданые