Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор ANCONA, DAVIDE
Автор ZUCCA, ELENA
Дата выпуска 2002
dc.description Mixins are modules that may contain deferred components, that is, components not defined in the module itself; moreover, in contrast to parameterised modules (like ML functors), they can be mutually dependent and allow their definitions to be overridden. In a preceding paper we defined a syntax and denotational semantics of a kernel language of mixin modules. Here, we take instead an axiomatic approach, giving a set of algebraic laws expressing the expected properties of a small set of primitive operators on mixins. Interpreting axioms as rewriting rules, we get a reduction semantics for the language and prove the existence of normal forms. Moreover, we show that the model defined in the earlier paper satisfies the given axiomatisation.
Издатель Cambridge University Press
Название A theory of mixin modules: algebraic laws and reduction semantics Partially supported by Murst (Tecniche formali per la specifica, lʼanalisi, la verifica, la sintesi e la trasformazione di sistemi software) and CNR (Formalismi per la specifica e la descrizione di sistemi ad oggetti).
DOI 10.1017/S0960129502003687
Electronic ISSN 1469-8072
Print ISSN 0960-1295
Журнал Mathematical Structures in Computer Science
Том 12
Первая страница 701
Последняя страница 737
Аффилиация ANCONA DAVIDE; Dipartimento di Informatica e Scienze dellʼInformazione
Аффилиация ZUCCA ELENA; Dipartimento di Informatica e Scienze dellʼInformazione
Выпуск 6

Скрыть метаданые