Автор |
ANCONA, DAVIDE |
Автор |
ZUCCA, ELENA |
Дата выпуска |
2002 |
dc.description |
Mixins are modules that may contain deferred components, that is, components not defined in the module itself; moreover, in contrast to parameterised modules (like ML functors), they can be mutually dependent and allow their definitions to be overridden. In a preceding paper we defined a syntax and denotational semantics of a kernel language of mixin modules. Here, we take instead an axiomatic approach, giving a set of algebraic laws expressing the expected properties of a small set of primitive operators on mixins. Interpreting axioms as rewriting rules, we get a reduction semantics for the language and prove the existence of normal forms. Moreover, we show that the model defined in the earlier paper satisfies the given axiomatisation. |
Издатель |
Cambridge University Press |
Название |
A theory of mixin modules: algebraic laws and reduction semantics Partially supported by Murst (Tecniche formali per la specifica, lʼanalisi, la verifica, la sintesi e la trasformazione di sistemi software) and CNR (Formalismi per la specifica e la descrizione di sistemi ad oggetti). |
DOI |
10.1017/S0960129502003687 |
Electronic ISSN |
1469-8072 |
Print ISSN |
0960-1295 |
Журнал |
Mathematical Structures in Computer Science |
Том |
12 |
Первая страница |
701 |
Последняя страница |
737 |
Аффилиация |
ANCONA DAVIDE; Dipartimento di Informatica e Scienze dellʼInformazione |
Аффилиация |
ZUCCA ELENA; Dipartimento di Informatica e Scienze dellʼInformazione |
Выпуск |
6 |