Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор DOŠEN, KOSTA
Автор PETRIĆ, ZORAN
Дата выпуска 1997
dc.description This paper presents a new and self-contained proof of a result characterizing objects isomorphic in the free symmetric monoidal closed category, i.e., objects isomorphic in every symmetric monoidal closed category. This characterization is given by a finitely axiomatizable and decidable equational calculus, which differs from the calculus that axiomatizes all arithmetical equalities in the language with 1, product and exponentiation by lacking 1<sup>c</sup>=1 and (a · b)<sup>c</sup> =a<sup>c</sup> · b<sup>c</sup> (the latter calculus characterizes objects isomorphic in the free cartesian closed category). Nevertheless, this calculus is complete for a certain arithmetical interpretation, and its arithmetical completeness plays an essential role in the proof given here of its completeness with respect to symmetric monoidal closed isomorphisms.
Издатель Cambridge University Press
Название Isomorphic objects in symmetric monoidal closed categories Work on this paper was supported by Grant 0401A of the Science Fund of Serbia.
Electronic ISSN 1469-8072
Print ISSN 0960-1295
Журнал Mathematical Structures in Computer Science
Том 7
Первая страница 639
Последняя страница 662
Аффилиация DOŠEN KOSTA; Mathematical Institute
Аффилиация PETRIĆ ZORAN; University of Belgrade
Выпуск 6

Скрыть метаданые