About stability of equilibrium shapes
Dambrine, Marc; Pierre, Michel; Dambrine Marc; Antenne de Bretagne de l'ENS Cachan, Institut de Recherche Mathématique de Rennes, Campus de Ker Lann, 35170 Bruz, France. (dambrine@bretagne.ens-cachan.fr); Pierre Michel; Antenne de Bretagne de l'ENS Cachan, Institut de Recherche Mathématique de Rennes, Campus de Ker Lann, 35170 Bruz, France. (pierre@bretagne.ens-cachan.fr)
Журнал:
ESAIM: Mathematical Modelling and Numerical Analysis
Дата:
2000
Аннотация:
We discuss the stability of "critical" or "equilibrium" shapes of a shape-dependent energy functional. We analyze a problem arising when looking at the positivity of the second derivative in order to prove that a critical shape is an optimal shape. Indeed, often when positivity -or coercivity- holds, it does for a weaker norm than the norm for which the functional is twice differentiable and local optimality cannot be a priori deduced. We solve this problem for a particular but significant example. We prove "weak-coercivity" of the second derivative uniformly in a "strong" neighborhood of the equilibrium shape.
263.4Кб