Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Dambrine, Marc
Автор Pierre, Michel
Дата выпуска 2000
dc.description We discuss the stability of "critical" or "equilibrium" shapes of a shape-dependent energy functional. We analyze a problem arising when looking at the positivity of the second derivative in order to prove that a critical shape is an optimal shape. Indeed, often when positivity -or coercivity- holds, it does for a weaker norm than the norm for which the functional is twice differentiable and local optimality cannot be a priori deduced. We solve this problem for a particular but significant example. We prove "weak-coercivity" of the second derivative uniformly in a "strong" neighborhood of the equilibrium shape.
Формат application.pdf
Издатель EDP Sciences
Копирайт © EDP Sciences, SMAI, 2000
Тема Shape optimisation
Тема stability of critical shape
Тема weak coercivity
Тема area-preserving transformations.
Название About stability of equilibrium shapes
Тип research-article
DOI 10.1051/m2an:2000105
Electronic ISSN 1290-3841
Print ISSN 0764-583X
Журнал ESAIM: Mathematical Modelling and Numerical Analysis
Том 34
Первая страница 811
Последняя страница 834
Аффилиация Dambrine Marc; Antenne de Bretagne de l'ENS Cachan, Institut de Recherche Mathématique de Rennes, Campus de Ker Lann, 35170 Bruz, France. (dambrine@bretagne.ens-cachan.fr)
Аффилиация Pierre Michel; Antenne de Bretagne de l'ENS Cachan, Institut de Recherche Mathématique de Rennes, Campus de Ker Lann, 35170 Bruz, France. (pierre@bretagne.ens-cachan.fr)
Выпуск 4

Скрыть метаданые