Автор |
Dambrine, Marc |
Автор |
Pierre, Michel |
Дата выпуска |
2000 |
dc.description |
We discuss the stability of "critical" or "equilibrium" shapes of a shape-dependent energy functional. We analyze a problem arising when looking at the positivity of the second derivative in order to prove that a critical shape is an optimal shape. Indeed, often when positivity -or coercivity- holds, it does for a weaker norm than the norm for which the functional is twice differentiable and local optimality cannot be a priori deduced. We solve this problem for a particular but significant example. We prove "weak-coercivity" of the second derivative uniformly in a "strong" neighborhood of the equilibrium shape. |
Формат |
application.pdf |
Издатель |
EDP Sciences |
Копирайт |
© EDP Sciences, SMAI, 2000 |
Тема |
Shape optimisation |
Тема |
stability of critical shape |
Тема |
weak coercivity |
Тема |
area-preserving transformations. |
Название |
About stability of equilibrium shapes |
Тип |
research-article |
DOI |
10.1051/m2an:2000105 |
Electronic ISSN |
1290-3841 |
Print ISSN |
0764-583X |
Журнал |
ESAIM: Mathematical Modelling and Numerical Analysis |
Том |
34 |
Первая страница |
811 |
Последняя страница |
834 |
Аффилиация |
Dambrine Marc; Antenne de Bretagne de l'ENS Cachan, Institut de Recherche Mathématique de Rennes, Campus de Ker Lann, 35170 Bruz, France. (dambrine@bretagne.ens-cachan.fr) |
Аффилиация |
Pierre Michel; Antenne de Bretagne de l'ENS Cachan, Institut de Recherche Mathématique de Rennes, Campus de Ker Lann, 35170 Bruz, France. (pierre@bretagne.ens-cachan.fr) |
Выпуск |
4 |