Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Logemann, Hartmut
Автор Curtain, Ruth F.
Дата выпуска 2000
dc.description We derive absolute stability results for well-posed infinite-dimensional systems which, in a sense, extend the well-known circle criterion to the case that the underlying linear system is the series interconnection of an exponentially stable well-posed infinite-dimensional system and an integrator and the nonlinearity ϕ satisfies a sector condition of the form (ϕ(u),ϕ(u) - au) ≤ 0 for some constant a>0. These results are used to prove convergence and stability properties of low-gain integral feedback control applied to exponentially stable, linear, well-posed systems subject to actuator nonlinearities. The class of actuator nonlinearities under consideration contains standard nonlinearities which are important in control engineering such as saturation and deadzone.
Формат application.pdf
Издатель EDP Sciences
Копирайт © EDP Sciences, SMAI, 2000
Тема Absolute stability
Тема actuator nonlinearities
Тема circle criterion
Тема integral control
Тема positive real
Тема robust tracking
Тема well-posed infinite-dimensional systems.
Название Absolute stability results for well-posed infinite-dimensional systems with applications to low-gain integral control
Тип research-article
DOI 10.1051/cocv:2000115
Electronic ISSN 1262-3377
Print ISSN 1292-8119
Журнал ESAIM: Control, Optimisation and Calculus of Variations
Том 5
Первая страница 395
Последняя страница 424
Аффилиация Logemann Hartmut; Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K.; hl@maths.bath.ac.uk.
Аффилиация Curtain Ruth F.; Mathematics Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands; R.F.Curtain@math.rug.nl.

Скрыть метаданые