Автор |
Logemann, Hartmut |
Автор |
Curtain, Ruth F. |
Дата выпуска |
2000 |
dc.description |
We derive absolute stability results for well-posed infinite-dimensional systems which, in a sense, extend the well-known circle criterion to the case that the underlying linear system is the series interconnection of an exponentially stable well-posed infinite-dimensional system and an integrator and the nonlinearity ϕ satisfies a sector condition of the form (ϕ(u),ϕ(u) - au) ≤ 0 for some constant a>0. These results are used to prove convergence and stability properties of low-gain integral feedback control applied to exponentially stable, linear, well-posed systems subject to actuator nonlinearities. The class of actuator nonlinearities under consideration contains standard nonlinearities which are important in control engineering such as saturation and deadzone. |
Формат |
application.pdf |
Издатель |
EDP Sciences |
Копирайт |
© EDP Sciences, SMAI, 2000 |
Тема |
Absolute stability |
Тема |
actuator nonlinearities |
Тема |
circle criterion |
Тема |
integral control |
Тема |
positive real |
Тема |
robust tracking |
Тема |
well-posed infinite-dimensional systems. |
Название |
Absolute stability results for well-posed infinite-dimensional systems with applications to low-gain integral control |
Тип |
research-article |
DOI |
10.1051/cocv:2000115 |
Electronic ISSN |
1262-3377 |
Print ISSN |
1292-8119 |
Журнал |
ESAIM: Control, Optimisation and Calculus of Variations |
Том |
5 |
Первая страница |
395 |
Последняя страница |
424 |
Аффилиация |
Logemann Hartmut; Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K.; hl@maths.bath.ac.uk. |
Аффилиация |
Curtain Ruth F.; Mathematics Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands; R.F.Curtain@math.rug.nl. |