A new method to obtain decay rate estimates for dissipative systems
Martinez, Patrick; Martinez Patrick; Département de Mathématiques, ENS Cachan, Antenne de Bretagne and IRMAR, Université Rennes I, Campus de Ker Lann, 35170 Bruz, France; martinez@bretagne.ens-cachan.fr.
Журнал:
ESAIM: Control, Optimisation and Calculus of Variations
Дата:
1999
Аннотация:
We consider the wave equation damped with a boundary nonlinear velocity feedback p(u'). Under some geometrical conditions, we prove that the energy of the system decays to zero with an explicit decay rate estimate even if the function ρ has not a polynomial behavior in zero. This work extends some results of Nakao, Haraux, Zuazua and Komornik, who studied the case where the feedback has a polynomial behavior in zero and completes a result of Lasiecka and Tataru. The proof is based on the construction of a special weight function (that depends on the behavior of the function ρ in zero), and on a new nonlinear integral inequality.
443.2Кб