Автор |
Martinez, Patrick |
Дата выпуска |
1999 |
dc.description |
We consider the wave equation damped with a boundary nonlinear velocity feedback p(u'). Under some geometrical conditions, we prove that the energy of the system decays to zero with an explicit decay rate estimate even if the function ρ has not a polynomial behavior in zero. This work extends some results of Nakao, Haraux, Zuazua and Komornik, who studied the case where the feedback has a polynomial behavior in zero and completes a result of Lasiecka and Tataru. The proof is based on the construction of a special weight function (that depends on the behavior of the function ρ in zero), and on a new nonlinear integral inequality. |
Формат |
application.pdf |
Издатель |
EDP Sciences |
Копирайт |
© EDP Sciences, SMAI, 1999 |
Тема |
Nonlinear stabilization |
Тема |
asymptotic behavior in zero and at infinity. |
Название |
A new method to obtain decay rate estimates for dissipative systems |
Тип |
research-article |
DOI |
10.1051/cocv:1999116 |
Electronic ISSN |
1262-3377 |
Print ISSN |
1292-8119 |
Журнал |
ESAIM: Control, Optimisation and Calculus of Variations |
Том |
4 |
Первая страница |
419 |
Последняя страница |
444 |
Аффилиация |
Martinez Patrick; Département de Mathématiques, ENS Cachan, Antenne de Bretagne and IRMAR, Université Rennes I, Campus de Ker Lann, 35170 Bruz, France; martinez@bretagne.ens-cachan.fr. |