Global behaviour of solutions of cyclic systems of q order 2 or 3 generalized Lyness' difference equations and of other more general equations of higher order
Bastien, G.; Rogalski, M.; Bastien, G.; UPMC Univ Paris 06, UMR 7586: Institut de Mathématiques de Jussieu (Univ Paris 06 and CNRS); Equipe d'Analyse fonctionnelle; Rogalski, M.; Equipe d'Analyse fonctionnelle; USTL Univ Lille 1, UMR 8524: Laboratoire Paul Painlevé (Univ Lille 1 and CNRS)
Журнал:
Journal of Difference Equations and Applications
Дата:
2011
Аннотация:
We study the global behaviour of the solutions of cyclic systems of q order k difference equations with q unknown sequences . If σ denotes the direct cyclic permutation , such a system is:for values of k and choices of f which correspond, first to cases of classical simple difference equations : order 2 or 3 extended Lyness' equations, order 2 generalized Lyness' type equations associated to conics, or to elliptic cubics or quartics; and then with f which becomes from other more general order k equations.
273.2Кб