Автор |
Bastien, G. |
Автор |
Rogalski, M. |
Дата выпуска |
2011 |
dc.description |
We study the global behaviour of the solutions of cyclic systems of q order k difference equations with q unknown sequences . If σ denotes the direct cyclic permutation , such a system is:for values of k and choices of f which correspond, first to cases of classical simple difference equations : order 2 or 3 extended Lyness' equations, order 2 generalized Lyness' type equations associated to conics, or to elliptic cubics or quartics; and then with f which becomes from other more general order k equations. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
dynamical systems |
Тема |
difference equations |
Тема |
Lyness' equations |
Тема |
periods |
Тема |
37E |
Тема |
39A10 |
Тема |
58F20 |
Название |
Global behaviour of solutions of cyclic systems of q order 2 or 3 generalized Lyness' difference equations and of other more general equations of higher order |
Тип |
research-article |
DOI |
10.1080/10236191003730555 |
Electronic ISSN |
1563-5120 |
Print ISSN |
1023-6198 |
Журнал |
Journal of Difference Equations and Applications |
Том |
17 |
Первая страница |
1651 |
Последняя страница |
1672 |
Аффилиация |
Bastien, G.; UPMC Univ Paris 06, UMR 7586: Institut de Mathématiques de Jussieu (Univ Paris 06 and CNRS); Equipe d'Analyse fonctionnelle |
Аффилиация |
Rogalski, M.; Equipe d'Analyse fonctionnelle; USTL Univ Lille 1, UMR 8524: Laboratoire Paul Painlevé (Univ Lille 1 and CNRS) |
Выпуск |
11 |
Библиографическая ссылка |
Bastien, G. and Rogalski, M. 2004. Global behaviour of the solutions of Lyness' difference equations. J. Difference Equ. Appl., 10: 977–1003. |
Библиографическая ссылка |
Bastien, G. and Rogalski, M. 2004. On some algebraic difference equations in , related to families of conics or cubics: Generalization of the Lyness' sequences. J. Math. Anal. Appl., 300: 303–333. |
Библиографическая ссылка |
Bastien, G. and Rogalski, M. 2005. On the algebraic difference equation in related to a family of elliptic quartics in the plane. Adv. Difference Equ., 2005(3): 227–261. |
Библиографическая ссылка |
Bastien, G. and Rogalski, M. 2007. On the algebraic difference equations in , related to a family of elliptic quartics in the plane. J. Math. Anal. Appl., 326: 822–844. |
Библиографическая ссылка |
Bastien, G. and Rogalski, M. 2007. Global behavior of the solutions of the k-lacunary order 2k Lyness' difference equation in , and of other more general equations. J. Difference Equ. Appl., 13(1): 79–88. |
Библиографическая ссылка |
Bastien, G. and Rogalski, M. 2009. Results and conjectures about order q Lyness' difference equation in , with a particular study of the case q = 3. Adv. Difference Equ., Article ID134749, 36 pages |
Библиографическая ссылка |
Beukers, F. and Cushman, R. 1998. Zeeman's monotonicity conjecture. J. Differential Equ., 143: 191–200. |
Библиографическая ссылка |
Bourbaki, N. 1963. Topologie Générale, Chapitre 7: les groupes additives ℝ<sup>n</sup> , Paris: Hermann. |
Библиографическая ссылка |
Cima, A., Gasull, A. and Mañosa, V. 2007. Dynamics of the third order Lyness' difference equation. J. Difference Equ. Appl., 13(10): 855–884. |
Библиографическая ссылка |
Iricanin, B. and Stevic, S. 2006. Some systems of nonlinear difference equations of higher order with periodic solutions. Dyn. Contin. Discrete Impuls. Syst. Ser. A: Math. Anal., 13: 499–507. |
Библиографическая ссылка |
Kocic, V.L. and Ladas, G. 1993. Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Dordrecht: Kluwer Academic Publishers. |
Библиографическая ссылка |
Papaschinopoulos, G., Schinas, C.J. and Stefanidou, G. 2007. On a k-order system of Lyness-type difference equations. Adv. Difference Equ., Article ID31272, 13 pages. |
Библиографическая ссылка |
Yalçinkaya, I., Cinar, C. and Atalay, M. 2008. On the solutions of systems of difference equations. Adv. Difference Equ., Article ID143943, 9 pages. |
Библиографическая ссылка |
Zeeman, E.C. 1996. Geometric Unfolding of a Difference Equation, Oxford: Hertford College. unpublished paper: preprint, |