Автор |
Mcdonald, James B. |
Автор |
White, Steven B. |
Дата выпуска |
1993 |
dc.description |
Numerous estimation techniques for regression models have been proposed. These procedures differ in how sample information is used in the estimation procedure. The efficiency of least squares (OLS) estimators implicity assumes normally distributed residuals and is very sensitive to departures from normality, particularly to "outliers" and thick-tailed distributions. Lead absolute deviation (LAD) estimators are less sensitive to outliers and are optimal for laplace random disturbances, but not for normal errors. This paper reports monte carlo comparisons of OLS,LAD, two robust estimators discussed by huber, three partially adaptiveestimators, newey's generalized method of moments estimator, and an adaptive maximum likelihood estimator based on a normal kernal studied by manski. This paper is the first to compare the relative performance of some adaptive robust estimators (partially adaptive and adaptive procedures) with some common nonadaptive robust estimators. The partially adaptive estimators are based on three flxible parametric distributions for the errors. These include the power exponential (Box-Tiao) and generalized t distributions, as well as a distribution for the errors, which is not necessarily symmetric. The adaptive procedures are "fully iterative" rather than one step estimators. The adaptive estimators have desirable large sample properties, but these properties do not necessarily carry over to the small sample case.The monte carlo comparisons of the alternative estimators are based on four different specifications for the error distribution: a normal, a mixture of normals (or variance-contaminated normal), a bimodal mixture of normals, and a lognormal. Five hundred samples of 50 are used. The adaptive and partially adaptive estimators perform very well relative to the other estimation procedures considered, and preliminary results suggest that in some important cases they can perform much better than OLS with 50 to 80% reductions in standard errors. |
Формат |
application.pdf |
Издатель |
Marcel Dekker, Inc. |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
regression models |
Тема |
adaptive maximum likelihood estimation |
Тема |
generalized method of moments estimation |
Тема |
M-estimation |
Тема |
partially adaptive estimation |
Тема |
monte carlo simulation |
Тема |
C13 |
Тема |
C14 |
Название |
A comparison of some robust, adaptive, and partially adaptive estimators of regression models |
Тип |
research-article |
DOI |
10.1080/07474939308800255 |
Electronic ISSN |
1532-4168 |
Print ISSN |
0747-4938 |
Журнал |
Econometric Reviews |
Том |
12 |
Первая страница |
103 |
Последняя страница |
124 |
Аффилиация |
Mcdonald, James B.; Brigham young university |
Аффилиация |
White, Steven B.; Allstate Insurance Co. |
Выпуск |
1 |
Библиографическая ссылка |
Andrews, D. F., Bickel, P. J., Hampel, F. R., Huber, P. J., Rogers, W. H. and Tukey, J. W. 1972. Robust estimators of location: survey and advances, Princeton university press. |
Библиографическая ссылка |
Bassett, G. and Koenker, R. 1978. Asymptotic theory of least absolute error regression. Journal of the american statistical association, 73: 618–622. |
Библиографическая ссылка |
Bickel, P. J. 1982. On adaptive estimation. Annals of statistics, 10: 647–671. |
Библиографическая ссылка |
Blattberg, R. and Gonedes, N. 1974. A comparison of the stable and student distributions as statistical models for stock process. Journal of business, 47: 244–280. |
Библиографическая ссылка |
Gentle, T. E. 1977. Least absolute values estimation: an introduction. Communications in statistics, B6: 313–328. |
Библиографическая ссылка |
Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J. and Stahel, W. A. 1986. Robust statistics: the approach based on influence functions, New York: Wiley. |
Библиографическая ссылка |
Hogg, R. V. 1974. Adaptive robust procedures: a partial review and some suggestions for future applications and theory. Journal of the american statistical association, 69: 909–927. |
Библиографическая ссылка |
Hsieh, D. A. and Manski, C. F. 1987. Monte carlo evidence on adaptive maximum likelihood estimation of a regression. Annals of statistics, 15: 541–551. |
Библиографическая ссылка |
Huber, P. J. 1964. Robust estimation of a scale parameter. Annals of mathematical statistics, 35: 73–101. |
Библиографическая ссылка |
Huber, P. J. 1981. Robust statistics , New York: Wiley. |
Библиографическая ссылка |
Jeffreys, H. 1973. Scientific inference, Cambridge: Cambridge university press. |
Библиографическая ссылка |
Jeffreys, H. 1967. Theory of probability, London: Oxford university. (1st edition 1939) |
Библиографическая ссылка |
Koenker, R. 1982. Robust estimation in econometrics. Econometric reviews, 1: 213–255. |
Библиографическая ссылка |
Manski, C. 1984. Adaptive estimation of non-linear regression models. Econometric reviews, 3: 145–194. |
Библиографическая ссылка |
Mcdonald, J. B. and Butler, R. J. 1990. Regression models for positive random variables with an application to ineauality. Journal of econometrics, 43: 227–251. |
Библиографическая ссылка |
Mcdonald, J. B. and Butler, R. J. 1987. Some generalized mixture distributions with an application to unemployment duration. The review of economics and statistics, 69: 232–240. |
Библиографическая ссылка |
Mcdonald, J. B. and Newey, W. K. 1988. Partially adaptive estimation of regression models via the generalized t distribution. Econometric theory, 4: 428–57. (An earlier version of this paper was presented at the summer econometric meetings at stanford, 1984) |
Библиографическая ссылка |
Newey, W. K. 1988. Adaptive estimation of regression models via moment restrictions. Journal of econometrics, 38: 301–339. |
Библиографическая ссылка |
Potscher, B. M. and Prucha, I. R. 1986. A class of partially adaptive one-step M-estimators for the nonlinear regression model with dependent observations. Journal of econometrics, 25: 219–251. |
Библиографическая ссылка |
Prentice, R. L. 1975. Discrimination among some parametric models. Biometrika, 62: 607–614. |
Библиографическая ссылка |
Zeckhauser, R. and Thompson, M. 1970. Linear regression with non-normal error terms. Review of economics and statistics, 52: 280–286. |
Библиографическая ссылка |
Zellner, Z. 1976. Bayesian and non-bayesian analysis of the regression model with multivariate student-t eror terms. Journal of the american statistical association, 71: 400–405. |
Библиографическая ссылка |
Zellner, A. 1983. “Statistical theory and econometrics”. In Handbook of econometrics, Amsterdam: North Holland. Chapter 2 |