Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Robert, Christian
Дата выпуска 1989
dc.description Given a general statistical model and an arbitrary quadratic loss, we propose a lower bound for the associated risk of a class of shrinkage estimators. With respect to the considered class of shrinkage estimators, this bound is optimal.In the particular case of the estimation of the location parameter of an ellipti-cally symmetric distribution, this bound can be used to find the relative improvement brought by a given estimator and the remaining possible improvement, using a Monte-Carlo method. We deduce from these results a new type of shrinkage estimators whose risk can be as close as one wants of the lower bound near a chosen pole and yet remain bounded. Some of them are good alternatives to the positive-part James-Stein estimator.
Формат application.pdf
Издатель Marcel Dekker, Inc.
Копирайт Copyright Taylor and Francis Group, LLC
Тема quadratic risk
Тема shrinkage estimators
Тема elliptically symmetric distribution
Тема E-minimaxity
Тема 62C05
Тема 62C15
Тема 62F10
Тема 62J07
Название A lower bound for the risk of classes of shrinkage estimators ina general multivariate estimation problem and some deduced estimators
Тип research-article
DOI 10.1080/03610928908830036
Electronic ISSN 1532-415X
Print ISSN 0361-0926
Журнал Communications in Statistics - Theory and Methods
Том 18
Первая страница 2289
Последняя страница 2299
Аффилиация Robert, Christian; Purdue University and Université de Rouen
Выпуск 6
Библиографическая ссылка Angers, J. F. 1987. “Development of robust Bayes estimators for a multivariate normal mean”. Statistics Department, Purdue University. Ph.D. Thesis
Библиографическая ссылка Berger, J. 1980. A robust generalized Bayes estimator and confidence region for a multivariate normal mean. Ann. Stat, 8(4): 716–761.
Библиографическая ссылка Berger, J. 1982. Estimation in continuous exponential families: Bayesian estimation subject to risk restrictions and inadmissibility results. Statistical Decision Theory and Related Topics HI, 1(4): 109–141.
Библиографическая ссылка Berger, J. 1985. “The robust Bayesian viewpoint”. In Robustness of Bayesian analysis Edited by: Kadane, J. North-Holland
Библиографическая ссылка Bock, M. E. 1985. Minimax estimators that shift towards a hypersphere for location vectors of spherically symmetric distributions. J. Mult. Anal, 17: 127–147.
Библиографическая ссылка Bock, M. E. 1988. “Shrinkage estimators: Pseudo-Bayes Rules for Normal Mean Vectors”. In Proc. Fourth. Purdue Symp. Dec. Theo. Rel. Topic, Edited by: Gupta, S. S. and Berger, J. Springer Verlag.
Библиографическая ссылка Bock, M. E. and Robert, C. 1988. “Bayes estimators associated with uniform distributions on spheres (1): the empirical Bayes approach”. In Tech. Report, Purdue University.
Библиографическая ссылка Brown, L. 1988. “The differential inequality of a statistical estimation problem”. In Proc. Fourth. Purdue Symp. Dec. Theo. Rel. Topic, Edited by: Gupta, S. S. and Berger, J. Springer Verlag.
Библиографическая ссылка Cellier, D., Fourdrinier, D. and Robert, C. 1987. Estimateurs à rétrécisseur du para-mètre de position d'une loi àsymetrie sphérique. Note aux Comptes Rendus de I'Académie des Sciences de Paris, 304(14): 439–442.
Библиографическая ссылка Chen, S. 1983. “Restricted Risk Bayes Estimation”. Purdue University. Ph.D. Thesis
Библиографическая ссылка George, E. 1986. Minimax multiple shrinkage estimation. Ann. Stat, 14(1): 188–205.
Библиографическая ссылка Judge, G. and Bock, M. E. 1978. The statistical implications of Pre-test and Stein-rule estimators in Econometrics North-Holland
Библиографическая ссылка Kempthorne, P. 1988. Controlling risks under different loss functions: the compro-mise decision problem. Ann. Stat, 16(4)
Библиографическая ссылка Robert, C. 1989. Modified Bessel functions and their applications in Probability and Statistics. Statistics & Probability Letters, 16(4) (to appear)
Библиографическая ссылка Spruill, M. 1986. Some approximate restricted Bayes estimators of a normal mean. Statistics & Decisions, 4(4): 337–351.

Скрыть метаданые