A Construction of Uniquely C<sub>4</sub>-free colourable Graphs
Benadé, Gerhard; Broere, Izak; Brown, Jason I.; Benadé, Gerhard; Department of Mathematics, Rand Afrikaans University; Broere, Izak; Department of Mathematics, Rand Afrikaans University; Brown, Jason I.; Department of Mathematics, York University
Журнал:
Quaestiones Mathematicae
Дата:
1990
Аннотация:
AbstractAn F-free colouring of a graph G is a partition {V<sub>1</sub>,V<sub>2</sub>,…,V<sub>n</sub>} of the vertex set V(G) of G such that F is not an induced subgraph of G[V<sub>i</sub>] for each i. A graph is uniquely F-free colourable if any two .F-free colourings induce the same partition of V(G). We give a constructive proof that uniquely C<sub>4</sub>-free colourable graphs exist.
225.2Кб