| Автор | Benadé, Gerhard |
| Автор | Broere, Izak |
| Автор | Brown, Jason I. |
| Дата выпуска | 1990 |
| dc.description | AbstractAn F-free colouring of a graph G is a partition {V<sub>1</sub>,V<sub>2</sub>,…,V<sub>n</sub>} of the vertex set V(G) of G such that F is not an induced subgraph of G[V<sub>i</sub>] for each i. A graph is uniquely F-free colourable if any two .F-free colourings induce the same partition of V(G). We give a constructive proof that uniquely C<sub>4</sub>-free colourable graphs exist. |
| Формат | application.pdf |
| Издатель | Taylor & Francis Group |
| Копирайт | Copyright Taylor and Francis Group, LLC |
| Тема | 05C15 |
| Название | A Construction of Uniquely C<sub>4</sub>-free colourable Graphs |
| Тип | research-article |
| DOI | 10.1080/16073606.1990.9631616 |
| Electronic ISSN | 1727-933X |
| Print ISSN | 1607-3606 |
| Журнал | Quaestiones Mathematicae |
| Том | 13 |
| Первая страница | 259 |
| Последняя страница | 264 |
| Аффилиация | Benadé, Gerhard; Department of Mathematics, Rand Afrikaans University |
| Аффилиация | Broere, Izak; Department of Mathematics, Rand Afrikaans University |
| Аффилиация | Brown, Jason I.; Department of Mathematics, York University |
| Выпуск | 2 |
| Библиографическая ссылка | Benadé, G. and Broere, I. Generalized Colourings: Existence of uniquely colourable graphs Submitted |
| Библиографическая ссылка | Broere, I. and Frick, M. “On the order of uniquely colourable graphs.”. In Discrete Math, (to appear) |
| Библиографическая ссылка | Brown, J. I. 1987. A theory of generalized graph colourings Ph. D. thesis, Department of Mathematics, University of Toronto |
| Библиографическая ссылка | Brown, J. I. and Corneil, D. G. 1987. On Generalized Graph Colourings. J. Graph Theory, 11: 87–99. |
| Библиографическая ссылка | Chartrand, G. and Lesniak, L. 1986. Graphs and Digraphs second edition, Wads-worth, Belmont |