Автор |
Benadé, Gerhard |
Автор |
Broere, Izak |
Автор |
Brown, Jason I. |
Дата выпуска |
1990 |
dc.description |
AbstractAn F-free colouring of a graph G is a partition {V<sub>1</sub>,V<sub>2</sub>,…,V<sub>n</sub>} of the vertex set V(G) of G such that F is not an induced subgraph of G[V<sub>i</sub>] for each i. A graph is uniquely F-free colourable if any two .F-free colourings induce the same partition of V(G). We give a constructive proof that uniquely C<sub>4</sub>-free colourable graphs exist. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
05C15 |
Название |
A Construction of Uniquely C<sub>4</sub>-free colourable Graphs |
Тип |
research-article |
DOI |
10.1080/16073606.1990.9631616 |
Electronic ISSN |
1727-933X |
Print ISSN |
1607-3606 |
Журнал |
Quaestiones Mathematicae |
Том |
13 |
Первая страница |
259 |
Последняя страница |
264 |
Аффилиация |
Benadé, Gerhard; Department of Mathematics, Rand Afrikaans University |
Аффилиация |
Broere, Izak; Department of Mathematics, Rand Afrikaans University |
Аффилиация |
Brown, Jason I.; Department of Mathematics, York University |
Выпуск |
2 |
Библиографическая ссылка |
Benadé, G. and Broere, I. Generalized Colourings: Existence of uniquely colourable graphs Submitted |
Библиографическая ссылка |
Broere, I. and Frick, M. “On the order of uniquely colourable graphs.”. In Discrete Math, (to appear) |
Библиографическая ссылка |
Brown, J. I. 1987. A theory of generalized graph colourings Ph. D. thesis, Department of Mathematics, University of Toronto |
Библиографическая ссылка |
Brown, J. I. and Corneil, D. G. 1987. On Generalized Graph Colourings. J. Graph Theory, 11: 87–99. |
Библиографическая ссылка |
Chartrand, G. and Lesniak, L. 1986. Graphs and Digraphs second edition, Wads-worth, Belmont |