A Numerical Study of Eigenvalues of the Hyperbolic Laplacian for Polyhedra with One Cusp
Grunewald, Fritz; Huntebrinker, Wolfgang; Grunewald, Fritz; Mathematisches Institut, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1; Huntebrinker, Wolfgang; Mathematisches Institut, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1
Журнал:
Experimental Mathematics
Дата:
1996
Аннотация:
Let H<sub>3</sub> be three-dimensional hyperbolic space and Γ a group of isometries of H<sub>3</sub> that acts discontinuously on H<sub>3</sub> and that has a fundamental domain of finite hyperbolic volume. The laplace operator –δ of H<sub>3</sub> gives rise to a positive, essentiallv selfadjoint operator on L <sup>2</sup> (Γ\H<sub>3</sub>). The nature of its discrete spectrum dspec Γ is still not well understood if Γ is not cocompact.This paper contains a report on a numerical study of dspec Γ for various noncocompact groups Γ. Particularly interesting are the results for some nonarithmetic groups Γ.
11.52Мб