Автор |
Grunewald, Fritz |
Автор |
Huntebrinker, Wolfgang |
Дата выпуска |
1996 |
dc.description |
Let H<sub>3</sub> be three-dimensional hyperbolic space and Γ a group of isometries of H<sub>3</sub> that acts discontinuously on H<sub>3</sub> and that has a fundamental domain of finite hyperbolic volume. The laplace operator –δ of H<sub>3</sub> gives rise to a positive, essentiallv selfadjoint operator on L <sup>2</sup> (Γ\H<sub>3</sub>). The nature of its discrete spectrum dspec Γ is still not well understood if Γ is not cocompact.This paper contains a report on a numerical study of dspec Γ for various noncocompact groups Γ. Particularly interesting are the results for some nonarithmetic groups Γ. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
A Numerical Study of Eigenvalues of the Hyperbolic Laplacian for Polyhedra with One Cusp |
Тип |
research-article |
DOI |
10.1080/10586458.1996.10504339 |
Electronic ISSN |
1944-950X |
Print ISSN |
1058-6458 |
Журнал |
Experimental Mathematics |
Том |
5 |
Первая страница |
57 |
Последняя страница |
80 |
Аффилиация |
Grunewald, Fritz; Mathematisches Institut, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1 |
Аффилиация |
Huntebrinker, Wolfgang; Mathematisches Institut, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1 |
Выпуск |
1 |
Библиографическая ссылка |
Abramowitz, M. and Stegun, I. A. 1965. Handbook of Mathematical Functions New York: Dover.. [Abramowitz and Stegun 1965] |
Библиографическая ссылка |
Axelsson, O. and Barker, V. A. 1984. Finite Element Solution of Boundary Value Problems: Theory and Computation Orlando, Florida: Academic Press.. [Axelsson and Barker 1984] |
Библиографическая ссылка |
Babuška, I. 1986. “Feedback, adaptivity, and a-posteriori estimates in finite elements: aims, theory, and experience”.”. In Accuracy Estimates and Adaptive Refinements in Finite Element Computations Edited by: Babuska, I. 3–23. Chicester: Wiley.. [Babuška 1986], Lisbon, 1984 |
Библиографическая ссылка |
Babuška, I. 1988. “Advances in the pand h-p versions of the finite element method. A survey”.”. In Numerical Mathematics Edited by: Agarval, R. P. 31–46. Basel: Birkhäuser.. [Babuška 1988], Singapore, 1988, Internat. Schriftenreihe Numer. Math. 86 |
Библиографическая ссылка |
Babuška, I. and Aziz, A. K. 1976. “On the angle condition in the finite element method”. SIAM J. Numer. Anal., 13: 214–226. [Babuška and Aziz 1976] |
Библиографическая ссылка |
Babuška, I. and Guo, B. Q. 1988. “Regularity of the solution of elliptic problems with piecewise analytic data. I. Boundary value problems for linear elliptic equations of second order”. SIAM J. Math. Anal., 19: 172–203. [Babuška and Guo 1988] |
Библиографическая ссылка |
Babuška, I. and Guo, B. Q. 1992. “The h, pand h-p version of the finite element method; basic theory and applications”. Advances in Engineering Software, 15: 159–172. [Babuška and Guo 1992] |
Библиографическая ссылка |
Babuška, I., Guo, B. Q. and Osborn, J. E. 1989. “Regularity and numerical solution of eigenvalue problems with piecewise analytic data”. SIAM J. Numer. Anal., 26: 1534–1560. [Babuška et al. 1989] |
Библиографическая ссылка |
Babuška, I. and Osborn, J. E. 1987. “Estimates for the errors in eigenvalue and eigenvector approximation by Galerkin methods, with particular attention to the case of multiple eigenvalues”. SIAM J. Numer. Anal., 24: 1249–1276. [Babuška and Osborn 1987] |
Библиографическая ссылка |
Babuška, I. and Osborn, J. E. 1989. “Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems”. Math. Comp., 52: 275–297. [Babuška and Osborn 1989] |
Библиографическая ссылка |
Babuška, I. and Osborn, J. E. 1991. “Eigenvalue problems”.”. In Handbook of Numerical Analysis, II: Finite Element Methods Edited by: Ciarlet, P. G. and Lions, J. L. 641–787. Amsterdam: North-Holland.. [Babuška and Osborn 1991], Part 1 |
Библиографическая ссылка |
Banerjee, U. 1992. “A note on the effect of numerical quadrature in finite element eigenvalue approximation”. Numer. Math., 61: 145–152. [Banerjee 1992] |
Библиографическая ссылка |
Banerjee, U. and Osborn, J. E. 1990. “Estimation of the effect of numerical integration in finite element eigenvalue approximation”. Numer. Math., 56: 735–762. [Banerjee and Osborn 1990] |
Библиографическая ссылка |
Bank, R. E. 1983. “The efficient implementation of local mesh refinement algorithms”.”. In Adaptive Computational Methods for Partial Differential Equations Edited by: Babuska, I. 74–81. Philadelphia: SIAM.. [Bank 1983] |
Библиографическая ссылка |
Bank, R. E. and Sherman, A. H. 1979. “The use of adaptive grid refinement for badly behaved elliptic partial differential equations”.”. In Advances in Computer Methods for Partial Differential Equations III Edited by: Vichnevetsky, R. and Stepleman, R. S. 33–39. New Brunswick, NJ: IMACS.. [Bank and Sherman 1979], Bethlehem, PA, 1979, Reprinted as pp. 18–24 in Math. Comput. Simulation 22 |
Библиографическая ссылка |
Bank, R. E. and Sherman, A. H. 1981. “An adaptive multilevel method for elliptic boundary problems”. Computing, 26: 91–105. [Bank and Sherman 1981] |
Библиографическая ссылка |
Bank, R. E., Sherman, A. H. and Weiser, A. “Refinement algorithms and data structures for regular local mesh refinement”.”. In Scientific computing Edited by: Stepleman, R. S. 3–17. New Brunswick, NJ: IMACS.. [Bank et al. 1983], Montreal, 1982, and North-Holland, Amsterdam, 1983 |
Библиографическая ссылка |
Bianchi, L. 1892. “Sui gruppi de sostituzioni lineari con coefficienti appartenenti a corpi quadratici immaginari”. Math. Ann., 40: 332–412. [Bianchi 1892] |
Библиографическая ссылка |
Bogomolny, E., Georgot, B., Giannoni, M.-J. and Schmit, C. 1992. “Chaotic billiards generated by arithmetic groups”. Phys. Rev. Lett., 69: 1477–1480. [Bogomolny et al. 1992] |
Библиографическая ссылка |
Bolte, J., Steil, G. and Steiner, F. 1992. “Arithmetical chaos and violation of universality in energy level statistics”. Phys. Rev. Lett., 69: 2188–2191. [Bolte et al. 1992] |
Библиографическая ссылка |
Chatellin, F. 1983. Spectral Approximation of Linear Operators New York: Academic Press.. [Chatellin 1983] |
Библиографическая ссылка |
Ciarlet, P. G. 1978. The Finite Element Method for Elliptic Problems Amsterdam: North-Holland.. [Ciarlet 1978] |
Библиографическая ссылка |
Ciarlet, P. G. and Raviart, P.-A. 1972. “The combined effect of curved boundaries and numerical integration in isoparametric finite element methods”.”. In The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations Edited by: Aziz, A. K. 409–474. New York: Academic Press.. [Ciarlet and Raviart 1972] |
Библиографическая ссылка |
Concus, P., Golub, G. H. and O'Leary, D. P. 1976. “A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations”.”. In Sparse Matrix Computations Edited by: Bunch, J. R. and Rose, D. J. 309–332. New York: Academic Press.. [Concus et al. 1976] |
Библиографическая ссылка |
Elstrodt, J., Grunewald, F. and Mennicke, J. 1985. “Eisenstein series on three-dimensional hyperbolic space and imaginary quadratic number fields”. J. reine angew. Math., 360: 160–213. [Elstrodt et al. 1985] |
Библиографическая ссылка |
Elstrodt, J., Grunewald, F. and Mennicke, J. 1987. “Some remarks on discrete subgroups of SL<sub>2</sub>(C) (Russian). Zapiski Nauchnykh Seminarov Mat. Inst. Steklov., 162: 77–106. [Elstrodt et al. 1987], English translation in J. Sov. Math. 46 (1989), 1760–1788 |
Библиографическая ссылка |
Elstrodt, J., Grunewald, F. and Mennicke, J. “Groups acting on 3-dimensional hyperbolic space” [Elstrodt et al. ≥ 1996], in preparation |
Библиографическая ссылка |
Ergatoudis, J. G., Irons, B. M. and Zienkiewicz, O. C. 1968. “Curved, isoparametric, quadrilateral elements for finite element analysis”. Internat. J. Solids Structures, 4: 31–42. [Ergatoudis et al. 1968] |
Библиографическая ссылка |
Ewing, R. E. 1990. “A posteriori error estimation”. Computer Methods in Applied Mechanics and Engineering, 82: 59–72. [Ewing 1990] |
Библиографическая ссылка |
Gambolati, G. and Putti, M. 1994. “A comparison of Lanczos and optimization methods in the partial solution of sparse symmetric eigenproblems”. Internat. J. Numer. Methods Engrg., 37: 605–621. [Gambolati and Putti 1994] |
Библиографическая ссылка |
Grunewald, F. and Huntebrinker, W. “A numerical study of eigenvalues of the hyperbolic Laplacian for polyhedra with two cusps” [Grunewald and Huntebrinker], in preparation |
Библиографическая ссылка |
Hackbusch, W. 1986. Theorie und Numerik elliptischer Differentialgleichungen Stuttgart: Teubner.. [Hackbusch 1986] |
Библиографическая ссылка |
Hackbusch, W. 1993. Iterative Lösung grofβr schwachbesetzter Gleichungssysteme, , 2. Auflage Stuttgart: Teubner.. [Hackbusch 1993], Translated as Iterative Solution of Large Sparse Systems of Equations, Springer, New York, 1994 |
Библиографическая ссылка |
Hejhal, D. A. 1983. The Selberg Trace Formula for PSL(2,R) Vol. 2, Berlin: Springer.. [Hejhal 1983], Lecture Notes in Mathematics 1001 |
Библиографическая ссылка |
Hejhal, D. A. 1992. “Eigenvalues of the Laplacian for Hecke Triangle Groups”. Mem. Amer. Math. Soc., 97: 165 [Hejhal 1992], no. 469 |
Библиографическая ссылка |
Hejhal, D. A. and Rackner, B. 1992. “On the topography of Maass Waveforms for PSL(2,Z): experiments and heuristics”. Experimental Math., 1: 275–305. [Hejhal and Rackner 1992] |
Библиографическая ссылка |
Hestenes, M. R. and Stiefel, E. 1952. “Methods of conjugate gradients for solving linear systems”. J. Res. Nat. Bur. Standards, 49: 409–436. [Hestenes and Stiefel 1952] |
Библиографическая ссылка |
Hughes, T. J. R. 1987. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis Englewood Cliffs, N. J.: Prentice-Hall.. [Hughes 1987] |
Библиографическая ссылка |
Huntebrinker, W. 1991. “Numerische Bestimmung von Eigenwerten des Laplace-Operators auf hyperbolischen Räumen mit adaptiven Finit-Element-Methoden”. Bonner Math. Schriften, 225 [Huntebrinker 1991] |
Библиографическая ссылка |
Huntebrinker, W. 1995. “Numerische Bestimmung von Eigenwerten des Laplace-Beltrami-Operators auf dreidimensionalen hyperbolischen Räumen mit Finite-Element-Methoden”, Dissertation Heinrich-Heine-Universität Düsseldorf.. [Huntebrinker 1995] |
Библиографическая ссылка |
Jamet, P. 1976. Estimations de l'erreur pour les éléments finis droits presque dégénérés”. RAIRO Anal. Numér., 10: 43–60. [Jamet 1976] |
Библиографическая ссылка |
Krizek, M. 1992. “On the maximum angle condition for linear tetrahedral elements”. SIAM Journal on Numerical Analysis, 29: 513–520. [Krizek 1992] |
Библиографическая ссылка |
Maaβ, H. 1949. “Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktional-gleichungen”. Math. Ann., 121: 141–183. [Maaβ 1949a] |
Библиографическая ссылка |
Maaβ, H. 1949. “Automorphe Funktionen in mehreren Veränderlichen und Dirichletsche Reihen”. Abh. Math. Sem. Univ. Hamburg, 16: 72–100. [Maaβ 1949b] |
Библиографическая ссылка |
Phillips, R. S. and Sarnak, P. 1985. “On cusp forms for co-finite subgroups of PSL(2,R)”. Invent. Math., 80: 339–364. [Phillips and Sarnak 1985a] |
Библиографическая ссылка |
Phillips, R. S. and Sarnak, P. 1985. “The Weyl theorem and the deformation of discrete groups”. Comm. Pure Appl. Math., 38: 853–866. [Phillips and Sarnak 1985b] |
Библиографическая ссылка |
Picard, E. 1884. “Sur un groupe de transformations des points de l'espace situés du même coté d'un plan”. Bull. Soc. Math. France, 12: 43–47. [Picard 1884] |
Библиографическая ссылка |
Sarnak, P. 1986. “On cusp forms”.”. In The Selberg Trace Formula and Related Topics Edited by: Hejhal, D. A. 393–407. Providence, RI: Amer. Math. Soc.. [Sarnak 1986], Contemporary Mathematics 53 |
Библиографическая ссылка |
Sarnak, P. 1990. “On cusp forms II”.”. In Festschrift in honour of I. I. PiatetskiShapiro Edited by: Gelbart, S. 237–250. Jerusalem: Weizmann Institute.. [Sarnak 1990], Part II, Israel Mathematical Conference Proceedings 3 |
Библиографическая ссылка |
Sartoletto, F., Pini, G. and Gambolati, G. 1989. “Accelerated simultaneous iterations for large finite element eigenproblems”. J. Comput. Phys., 81: 53–69. [Sartoletto et al. 1989] |
Библиографическая ссылка |
Schwarz, H. R. 1991. Methode der finiten Elemente, , 3. Auflage Stuttgart: Teubner.. [Schwarz 1991], Translated as Finite Element Methods, Academic Press, London 1988 |
Библиографическая ссылка |
Selberg, A. 1956. “Harmonic analysis and discontinuous groups in weakly symmetric Riemann spaces with applications to Dirichlet series”. J. Indian Math. Soc. (New Series), 20: 47–87. [Selberg 1956] |
Библиографическая ссылка |
Smotrov, M. N. and Golovchansky, V. V. 1991. “Small eigenvalues of the Laplacian on T/H<sub>3</sub>for T= PSL<sub>2</sub>(Z[i])” [Smotrov and Golovchansky 1991], Preprint 91–040, Universität Bielefeld, SBF 343 |
Библиографическая ссылка |
Steil, G. “Eigenvalues of the Laplacian and of the Hecke operators for PSL(2,Z)” Institut für Theoretische Physik der Universität Hamburg.. [Steil 1994], Preprint 94–028, Submitted to Math. Comp. |
Библиографическая ссылка |
Stramm, K. 1994. “Kleine Eigenwerte des Laplace-Operators zu Kongruenzgruppen”. Schriftenreihe des Mathematischen Instituts und des Graduiertenkollegs der Universitat Miinster, 3. Serie, 11 [Stramm 1994] |
Библиографическая ссылка |
Strouboulis, T. and Haque, K. A. 1992. “Recent experiences with error estimation and adaptivity”, Part I: “Review of error estimators for scalar elliptic problems” and Part II: “Error estimation for h-adaptive approximations on grids of triangles und quadrilaterals”. Comput. Methods Appl. Mech. Engrg., 97: 399–436. 100 [Strouboulis and Haque 1992], (1992), 359–430 |
Библиографическая ссылка |
Swan, R. G. 1971. “Generators and relations for certain special linear groups”. Adv. Math., 6: 1–77. [Swan 1971] |
Библиографическая ссылка |
Venkov, A. B. 1977. “On an asymptotic formula connected with the number of eigenvalues corresponding to odd eigenfunctions of the Laplace-Beltrami operator on a fundamental region of the modular group PSL(2,Z)”. Dokl. Akad. Nauk SSSR, 233: 1021–1023. [Venkov 1977a], (Russian), Translated in Soviet Math. Doklady 18 (1977), 524–526) |
Библиографическая ссылка |
Venkov, A. B. 1977. “On the space of cusp forms for certain Fuchsian groups generated by reflections”. Dokl. Akad. Nauk SSSR, 236: 525–527. [Venkov 1977b], (Russian), Translated in Soviet Math. Doklady 18 (1977), 1214–1217) |
Библиографическая ссылка |
Venkov, A. B. 1978. “On the space of cusp functions for a Fuchsian group of the first kind with nontrivial commensurator”. Dokl. Akad. Nauk SSSR, 239: 511–514. [Venkov 1978], (Russian), Translated in Soviet Math. Doklady 19(1978), 343–347) |
Библиографическая ссылка |
Venkov, A. B. 1979. “The Artin–Takagi formula for Selberg's Zeta-function and the Roelcke conjecture”. Dokl. Akad. Nauk SSSR, 247: 540–542. [Venkov 1979], (Russian), Translated in Soviet Math. Doklady 20 (1979), 745–748 |
Библиографическая ссылка |
Venkov, A. B. 1981. “Spectral Theory of Automorphic Functions”. Trudy Mat. Inst. Steklov., 153: 172 [Venkov 1981], (Russian), Translated in Proc. Steklov Inst. Math. 1982, no. 4, 163 pp. (1983) |
Библиографическая ссылка |
Watkins, D. S. 1993. “Some perspectives on the eigenvalue problem”. SIAM Review, 35: 430–471. [Watkins 1993] |
Библиографическая ссылка |
Wolpert, S. A. 1994. “Disappearance of cusp forms in special families “. Ann. Math., 139: 239–291. [Wolpert 1994], (2nd Series) |
Библиографическая ссылка |
Zienkiewicz, O. C. and Morgan, K. 1983. Finite Elements and Approximation Chicester: Wiley.. [Zienkiewicz and Morgan 1983] |
Библиографическая ссылка |
Zienkiewicz, O. C. and Zhu, J. Z. 1991. “Adaptivity and mesh generation”. Internat. J. Numer. Methods Engrg., 32: 783–810. [Zienkiewicz and Zhu 1991] |