A Banach space that cannot be made into a BIP space
Olagunju, P. A.
Журнал:
Mathematical Proceedings of the Cambridge Philosophical Society
Дата:
1967
Аннотация:
1. A Banach space E over the complex field C is said to be a Banach inner-product (BIP) space if there exists a mapping 〈.,.〉 of E × E into C satisfying:(i) 〈x, x〉 ≥ 0 (x ∈ E) with equality only if x = 0;(ii) 〈x, y〉 = 〈y, x〉 (x, y ∈ E);(iii) 〈x + λy, z〉 = 〈x, z〉 + λ〈y, z〉 (x, y, z ∈ E, λ ∈ C);(iv) 〈x, x〉 ≤ k<sup>2</sup> ‖x‖<sup>2</sup> (x ∈ E),where k is a fixed positive number. Thus 〈.,.〉 is an inner product on E, which induces a norm ‖·‖<sub>1</sub> by the relation
96.23Кб