Автор | Olagunju, P. A. |
Дата выпуска | 1967 |
dc.description | 1. A Banach space E over the complex field C is said to be a Banach inner-product (BIP) space if there exists a mapping 〈.,.〉 of E × E into C satisfying:(i) 〈x, x〉 ≥ 0 (x ∈ E) with equality only if x = 0;(ii) 〈x, y〉 = 〈y, x〉 (x, y ∈ E);(iii) 〈x + λy, z〉 = 〈x, z〉 + λ〈y, z〉 (x, y, z ∈ E, λ ∈ C);(iv) 〈x, x〉 ≤ k<sup>2</sup> ‖x‖<sup>2</sup> (x ∈ E),where k is a fixed positive number. Thus 〈.,.〉 is an inner product on E, which induces a norm ‖·‖<sub>1</sub> by the relation |
Формат | application.pdf |
Издатель | Cambridge University Press |
Копирайт | Copyright © Cambridge Philosophical Society 1967 |
Название | A Banach space that cannot be made into a BIP space |
Тип | research-article |
DOI | 10.1017/S0305004100041967 |
Electronic ISSN | 1469-8064 |
Print ISSN | 0305-0041 |
Журнал | Mathematical Proceedings of the Cambridge Philosophical Society |
Том | 63 |
Первая страница | 949 |
Последняя страница | 950 |
Выпуск | 4 |