3-primary exponents
Neisendorfer, Joseph A.; Neisendorfer Joseph A.; Institute for Advanced Study
Журнал:
Mathematical Proceedings of the Cambridge Philosophical Society
Дата:
1981
Аннотация:
The purpose of this paper is to show that 3<sup>n</sup> annihilates the 3-primary component of the homotopy groups of the 2n + 1-dimensional sphere. In the terminology of (2) and (3), S<sup>2n+1</sup> has exponent 3<sup>n</sup> at 3.In fact, a stronger result is proved. Localize at 3 and let Ω<sup>2n</sup>S<sup>2n + 1</sup>〈2n + 1〉 denote the 2n-fold loop space of the 2n + 1-connected cover of S<sup>2n+1</sup>. Then Ω<sup>2n</sup>S<sup>2n + 1</sup>〈2n + 1〉 has a null homotopic 3<sup>n</sup>-th power map.
1.123Мб