Автор |
Neisendorfer, Joseph A. |
Дата выпуска |
1981 |
dc.description |
The purpose of this paper is to show that 3<sup>n</sup> annihilates the 3-primary component of the homotopy groups of the 2n + 1-dimensional sphere. In the terminology of (2) and (3), S<sup>2n+1</sup> has exponent 3<sup>n</sup> at 3.In fact, a stronger result is proved. Localize at 3 and let Ω<sup>2n</sup>S<sup>2n + 1</sup>〈2n + 1〉 denote the 2n-fold loop space of the 2n + 1-connected cover of S<sup>2n+1</sup>. Then Ω<sup>2n</sup>S<sup>2n + 1</sup>〈2n + 1〉 has a null homotopic 3<sup>n</sup>-th power map. |
Формат |
application.pdf |
Издатель |
Cambridge University Press |
Копирайт |
Copyright © Cambridge Philosophical Society 1981 |
Название |
3-primary exponents |
Тип |
research-article |
DOI |
10.1017/S0305004100058539 |
Electronic ISSN |
1469-8064 |
Print ISSN |
0305-0041 |
Журнал |
Mathematical Proceedings of the Cambridge Philosophical Society |
Том |
90 |
Первая страница |
63 |
Последняя страница |
83 |
Аффилиация |
Neisendorfer Joseph A.; Institute for Advanced Study |
Выпуск |
1 |