| Автор | Neisendorfer, Joseph A. |
| Дата выпуска | 1981 |
| dc.description | The purpose of this paper is to show that 3<sup>n</sup> annihilates the 3-primary component of the homotopy groups of the 2n + 1-dimensional sphere. In the terminology of (2) and (3), S<sup>2n+1</sup> has exponent 3<sup>n</sup> at 3.In fact, a stronger result is proved. Localize at 3 and let Ω<sup>2n</sup>S<sup>2n + 1</sup>〈2n + 1〉 denote the 2n-fold loop space of the 2n + 1-connected cover of S<sup>2n+1</sup>. Then Ω<sup>2n</sup>S<sup>2n + 1</sup>〈2n + 1〉 has a null homotopic 3<sup>n</sup>-th power map. |
| Формат | application.pdf |
| Издатель | Cambridge University Press |
| Копирайт | Copyright © Cambridge Philosophical Society 1981 |
| Название | 3-primary exponents |
| Тип | research-article |
| DOI | 10.1017/S0305004100058539 |
| Electronic ISSN | 1469-8064 |
| Print ISSN | 0305-0041 |
| Журнал | Mathematical Proceedings of the Cambridge Philosophical Society |
| Том | 90 |
| Первая страница | 63 |
| Последняя страница | 83 |
| Аффилиация | Neisendorfer Joseph A.; Institute for Advanced Study |
| Выпуск | 1 |